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the e↵ective wave vector related to the axion Compton
wavelength. However, for most experiments it is su�-
cient to ignore the axion spatial dependence and assume
a(t) = a0 cos(!at). Note that all terms containing ga��
are sometimes presented with the opposite sign, but does
not have an impact on this work as both representation
are correct.

By substituting the following vector identities, ~B·~ra =
~r · a ~B + a(~r · ~B) and ~ra ⇥ ~E = (~r⇥ a ~E) � a(~r⇥ ~E)
along with (5) and (6), into equations (3) and (4), the
modified Gauss’ and Ampere’s Law become

~r · ~D = ⇢f + ga��

r
✏0
µ0

~r · (a ~B), (7)

~r⇥ ~H = ~Jf +
@ ~D

@t
� ga��

r
✏0
µ0

 
@(a ~B)

@t
+ ~r⇥ (a ~E)

!
,

(8)

which is a more consistent way of expressing modified
axion electrodynamics. In general, it is better to rep-
resent the photon-axion interaction term as the product
of the axion scalar amplitude, a(t,~r), multiplied by ei-
ther the applied ~E-field or the applied ~B-field. This is
similar to the form of the equations in [14], but without
the magnetic monopole duality. Moreover, this repre-
sentation directly satisfies Faraday’s Law (Eqn. (6)) and
Gauss’ Law for Magnetism (Eqn.(5)). The former rep-
resentation, Eqns. (3)-(6) may lead to confusion, with
Faraday’s Law seemingly sometimes only approximately
satisfied when the applied field ~E has been set to zero.
This is because the last term in Eqn. (4), actually has a
term that depends on the time derivative of the ~B field.

With further manipulation one can show that the mod-
ified Maxwell’s equations maintain a similar form to the
non-modified equations, given by

~r · ~Da = ⇢f , (9)

~r⇥ ~Ha = ~Jf +
@ ~Da

@t
, (10)

~r · ~B = 0, (11)

~r⇥ ~E = �@ ~B

@t
(12)

with the constitutive relations redefined as

~Da = ✏0 ~E + ~P + ~Pa where ~Pa = �ga��

r
✏0
µ0

(a ~B), (13)

~Ha =
~B

µ0
� ~M � ~Ma where ~Ma = ga��

r
✏0
µ0

(a ~E). (14)

Here ~Da and ~Ha the modified definitions of these fields
that satisfy the equations (9) to (12) due to the addi-
tional axion induced vacuum polarization, ~Pa and axion
induced vacuum magnetization ~Ma.

This description is similar to that which is adopted
when deriving modified Maxwell’s equations for the pho-
ton sector Standard Model Extension (SME)[15], which
includes in the Lagrangian all possible Lorentz invariance
violations. By comparison to SME modified electrody-
namics, it is apparent that ga��a is similar to an oscillat-
ing odd-parity Lorentz invariance violation, DB or HE .
This type of Lorentz invariance violation is discussed in
detail in [16] and was also presented in SI units.
With the modification defined thusly, it is straightfor-

ward to show that the continuity equation is satisfied.
From equations (7) and (8) we may define

⇢a = ga��

r
✏0
µ0

~r · (a ~B), (15)

~Ja = �ga��

r
✏0
µ0

@(a ~B)

@t
. (16)

In the situation where there are no free charges or free
conducting electrons, we interpret ⇢a as a vacuum bound
charge and ~Ja as a polarization current. Taking the time
derivative of Eqn.(15) and the divergence of Eqn. (16)
we obtain

r · ~Ja = �@⇢a
@t

, (17)

demonstrating that the continuity equation is satisfied.
This means we may interpret the e↵ective current den-
sity, ~Ja, due to the displacement of e↵ective bound
charge, ⇢a, as an oscillating vacuum polarization Pa given

by ~Ja = @ ~Pa
@t .

Note, there is also an axion bound current associated
with the induced magnetization given by

~Jba = ~r⇥ ~Ma = �ga��

r
✏0
µ0

~r⇥ (a ~E). (18)

Since the axion modifications are in the source terms,
it is instructive to think of the oscillating bound charges
and currents (which are due to virtual particles) as pro-
viding oscillations in the magnetization and polarization
of the vacuum. Vacuum polarization and magnetiza-
tion e↵ects also causes the running of the fine structure
constant, ↵, due to equal components of electric screen-
ing (polarization of vacuum) and magnetic anti-screening
(magnetization of vacuum). These e↵ects cause the per-
ceived quantum of electric charge to increase at small
distances, while the preceived quantum of magnetic flux
decreases[17, 18]. Thus the fine structure constant in-
creases at small distances and high energy scales, with
the vacuum e↵ectively acting as a dielectric and param-
agnetic medium. The oscillating magnetization and po-
larization could be interpreted as a tiny oscillation of the
fine structure constant due to oscillations in the screen-
ing and anti-screening process, or equivalently, an oscil-
lation in the refractive index of the vacuum (similar to a


