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Taking the time derivative of eqn. (14) and the diver-
gence of eqn. (13) we obtain the continuity equation.

~r · ~Ja = �@⇢a
@t

, (15)

This polarization current density may be detected di-
rectly using a capacitor implanted in a DC magnetic field.

Axion Current Density Produced in Conductive Media due to
DC Magnetic Field

Inside a conductor we can no longer assume the free
charge and current are zero and in this case the modified
Ampere’s law becomes;

~Jfa = ga��

r
✏0
µ0

~B0
@a

@t
. (16)

In this case the axion-photon interaction drives the free
current in the opposite direction to bound current when
the medium is vacuum. Likewise modified Gauss’s law
becomes;

⇢fa = �ga��

r
✏0
µ0

~B0
~r · a. (17)

So the free charge induced in the conductor is of opposite
sign to the bound charge and the continuity equation is
also satisfied for the free charge and current. This free
current density is driven by the axion source term inside
any conductor where both axions and the DC magnetic
field are present. Thus any conductor, whether it is an
antenna designed to pick up the axion signal, or shield-
ing, will have currents induced in it by axions if a DC
magnetic field is present. Also, it is clear that shielding
will not suppress axion signals, even if the axion is low
mass and the converted wavelength is much larger than
the size of the experiment.

Voltage and Current Across a Capacitor Inside a
DC Magnetic Field

We now derive the voltage across a capacitor inside a
DC solenoid magnet. We assume the capacitor is aligned
in the z-direction along with the DC field B0ẑ as in
Fig.1, and that it has two parallel conducting plates of
area A separated by a length d. Consider the bound-
ary between the inner surface of the capacitor plates
and the vacuum between the two conducting sections.
Since inside the conductor ~Da = 0, and inside the vac-

uum ~Da = �g↵��
q

✏0
µ0
aB0ẑ, there must be a free sur-

face charge density, �fa induced on the inner surface of
the upper capacitor plate and -�fa induced on the lower

capacitor plate such that the electric displacement field
boundary conditions given by eqn. (12) are satisfied.

�fa = g↵��

r
✏0
µ0

aB0. (18)

From these surface charges, and the basic capacitor rela-
tionships we see that the voltage across the capacitor is
equal to V = q

C where q = �faA and C = ✏0✏rA
d , which

ultimately gives

Va =
1

✏r
g↵��cdB0a, (19)

Now, taking a = a0 cos(!at) and a0 =
q

2⇢a

c
h̄
ma

[39], we

arrive at

VaRMS =
1

✏r
ga��d

� c

!a

�
B0

p
⇢ac3. (20)

From (19) and using the expressions for a and a0 above,
the current across the capacitor can be found from I =
C dV

dt :

IaRMS = ga��A

r
✏0
µ0

B0

p
⇢ac3, (21)

which is consistent with eqn. (13). The above values
represent the value of the rms voltage and current source
oscillating at the frequency !a and since it is a capaci-
tance source the voltage leads the current by 90 degrees.

Voltage and Current Across a Dipole Wire Antenna
Inside a DC Magnetic Field

Using a similar approach, we can calculate, the voltage
and current induced in a wire dipole antenna embedded
in the same DC magnetic field, when the wire is aligned
in the z-direction. The current through the conducting
wire is simply given by Ifa = Jfa ⇤A, where in this case
A is the cross sectional area of the wire, so the rms value
may be written as;

IaRMS = ga��A

r
✏0
µ0

B0

p
⇢ac3, (22)

Knowing the conductivity of the wire,  the rms voltage
across the antenna may be caclulated to be

VaRMS = ga��
d



r
✏0
µ0

B0

p
⇢ac3. (23)

Because the dipole wire antenna is resistive, both the
voltage and current are in-phase and oscillating at a fre-
quency of !a. This voltage is much smaller than what can
be generated by axions across a capacitor, however the
current is equivalent for the same cross-sectional area.


