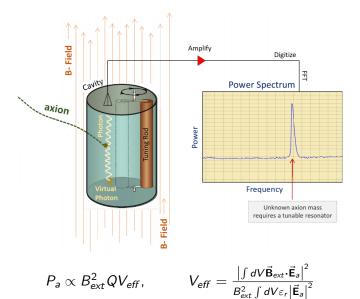
Orpheus: Extending the ADMX QCD Dark-Matter Axion Search to Higher Masses 3rd Workshop on Microwave Cavities and Detectors for Axion Research

Gianpalo Carosi, **Raphael Cervantes**, Seth Kimes, Parashar Mohapatra, Rich Ottens, Gray Rybka

University of Washington


08/23/2018

イロト 不得 トイヨト イヨト 二日

1/27

- 1. Detecting Axions with Haloscopes.
- 2. Motivation for Dielectric Haloscopes and Open Resonators.
- 3. Orpheus Concept.
- 4. Orpheus Progress.
- 5. Outlook.

Searching for Axions with the ADMX Haloscope

3/27

э

A D A A B A A B A A B A

Becomes increasingly difficult at higher frequency

$$P_{a} \propto B_{ext}^{2} QV_{eff}, \qquad V_{eff} = \frac{\left|\int dV \vec{B}_{ext} \cdot \vec{E}_{a}\right|^{2}}{B_{ext}^{2} \int dV \varepsilon_{r} |\vec{E}_{a}|^{2}}$$
Resonator wall
$$(1) \vec{E}_{a} \qquad (1) \vec{E}_{a} \qquad (1) \vec{E}_{ext} \cdot \vec{E}_{a} = 0, V \text{ is small}$$

$$\int dV \vec{B}_{ext} \cdot \vec{E}_{a} = 0, V \text{ is small}$$

$$V \text{ is large, } \left|\int dV \vec{B}_{ext} \cdot \vec{E}_{a}\right| = 0$$

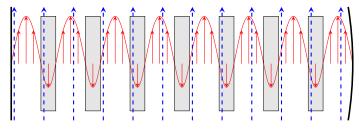
4 / 27

Solution: Dielectric Haloscopes

Higher frequency with more volume and better axion coupling.

$$P_{a} \propto B_{ext}^{2} QV_{eff}, \qquad V_{eff} = \frac{\left|\int dV \vec{\mathbf{B}}_{ext} \cdot \vec{\mathbf{E}}_{a}\right|^{2}}{B_{ext}^{2} \int dV \varepsilon_{r} |\vec{\mathbf{E}}_{a}|^{2}}$$

Resonator wall
$$\bigwedge \stackrel{\wedge}{\longleftarrow} \stackrel{\wedge}{\mathbf{E}}_{a} \qquad \stackrel{\wedge}{\leftarrow} \stackrel{\wedge}{\leftarrow} \stackrel{\wedge}{\overset{\wedge}{\leftarrow}} \stackrel{\wedge}{\overset{\vee}{\mathbf{B}}}_{ext} \qquad \boxed{} \text{Dielectric}$$


Low-loss dielectric $\sim \lambda/2$ thick placed every other half-wavelength.

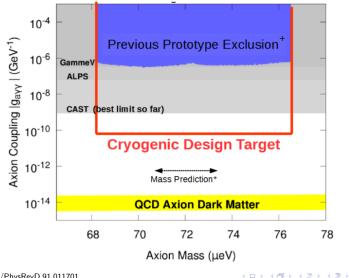
$$V \text{ is large, } \left| \int dV \vec{B}_{ext} \cdot \vec{E}_{a} \right| > 0$$

5/27

ADMX Orpheus Concept

<u>**Goal</u>**: Dielectrically Loaded Fabry-Perot Open Resonator threaded by a dipole magnet. Tunes with cavity length. Search for axion-like particles at 15-18 GHz.</u>

 $\mathsf{Open} \to \mathsf{Less} \mathsf{ ohmic losses} \to \mathsf{higher } \mathsf{Q}.$

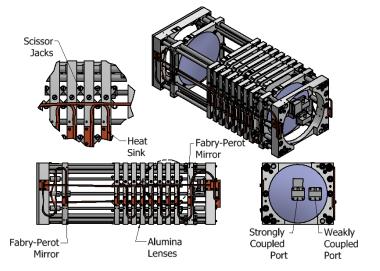

 $\mathsf{Open} \to \mathsf{Sparser}$ spectrum \to less mode crossings.

Challenges:

- Designing optics. Maintain good mode with high Q from 15-18 GHz.
- Moving mirror and dielectrics in LHe.
- Obtaining dipole magnet.

Orpheus Science Reach

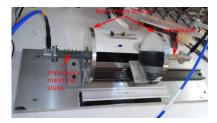
Within a few years.

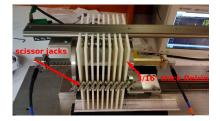


⁺10.1103/PhysRevD.91.011701 *arXiv:1403.4594

7 / 27

Progress Towards Orpheus: Preliminary Cryogenic Design

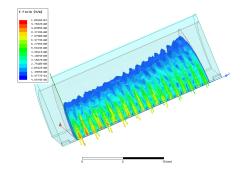

Submerged in LHe.



Think of an accordian!

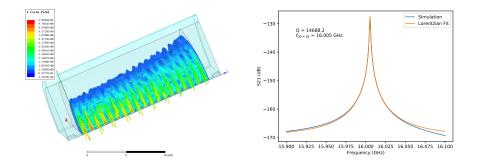
Room-Temperature Prototyping

Cheap and fast prototyping. Test mechanics and electronics.

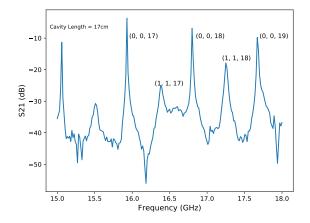


Strategy

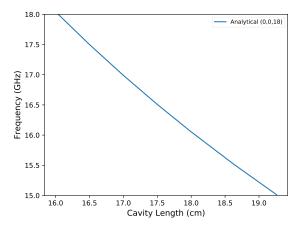
- Study empty cavity. Get analytical solution, simulations, and measurement to agree with each other. Gain confidence.
- Load cavity with dielectrics. Simulate and measure. See if they agree.


Standing waves in FP Cavities

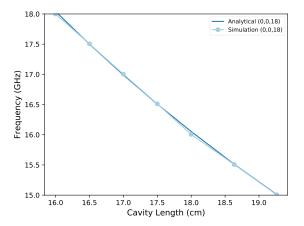
Sustain TEM_{mnq} modes. Think of Gaussian beams. m, n: nodes in transverse plane. q: nodes along cavity. Analytical formula:

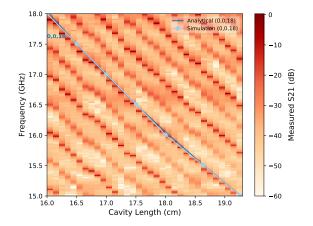

 $f_{mnq} = (q+1)f_o + (f_o/\pi)(1+m+n)\cos^{-1}(1-2L/r_o), f_o = \frac{c}{4L}$ Mirror focusing to reduce diffraction. Mode tunes with cavity length.

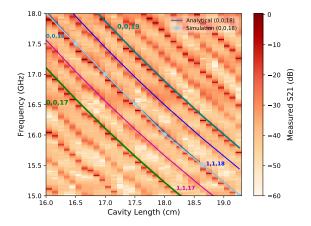
Simulation Transmission of TEM_{00-18} mode



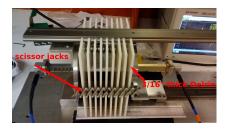
Simulated for different cavity lengths.

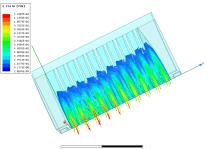

Measure Transmission of TEM_{00-18} mode


 Q_L between 1000 and 5000. Measured Qs don't match simulation, perhaps because of different coupling.

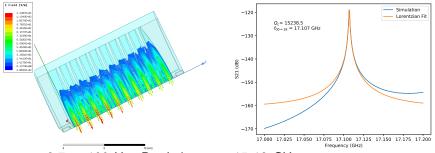

(□) (圖) (필) (필) (필) (필) (3/27)

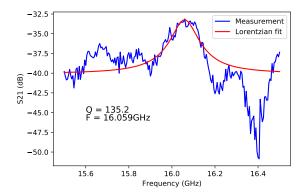
Simulations agree with analytical formula.



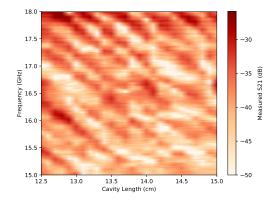

Resonant frequencies for analytical formula, simulation, and experiment agree!

Resonant frequencies for analytical formula, simulation, and experiment agree! Other modes where predicted. No mode crossings!


Room-Temperature Prototyping with Delrin


 TEM_{00-18} mode is the good mode for axion coupling. Can we track this mode while we tune it?

Delrin: Predict resonant frequency through simulation

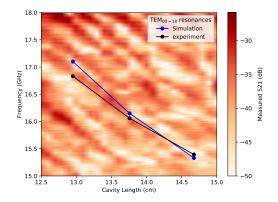

 $\varepsilon_r = 3.7$ at 100 Hz. Don't know at 15-18 GHz. Simulation done with lossless Delrin. Q_L comparable to empty resonator for this frequency at this cavity length. Q depends highly depends on loss tangent and impedance changing parameters (e.g. mirror thickness, hole aperture size).

Delrin setup: Measure Transmission of TE_{00-18} mode

Q is much lower, as expected. Delrin is very lossy. Will need better dielectrics to understand substructure.

Delrin setup mode map

Mode structure is apparent but messier. Expected with lower Q.


Delrin setup mode map

Mode structure is apparent but messier. Expected with lower Q.

Simulation resonances agree with experiment. Should be better with improved mechanical structure. Also, don't know ε_r .

Delrin setup mode map

Mode structure is apparent but messier. Expected with lower Q.

Simulation resonances agree with experiment. Should be better with improved mechanical structure.

Better Q would allow us to understand substructure, and a solution of the second substructure and the second subst

Progress Towards Orpheus: Magnet Making

3,250 windings. Niobium titanium wire 0.3 mm in diameter. 1 T.

Prototyping different manufacturing methods.

- Improve mechanical design.
- Improve and understand optics.
- Develop DAQ, electronics, and motor systems.
- Cryogenic tests.

First results in 2-3 years.

How to get to DFSZ sensitivity

Scan rate equation from ADMX

$$\frac{df}{dt} \approx 1.68 \text{ GHz/year } \left(\frac{g_{\gamma}}{0.36}\right)^4 \left(\frac{f}{1 \text{ GHz}}\right)^2 \left(\frac{\rho_0}{0.45 \text{ GeV/cc}}\right)^2 + \left(\frac{5}{SNR}\right)^2 \left(\frac{B_0}{8 \text{ T}}\right)^4 \left(\frac{V}{100l}\right)^2 \left(\frac{Q_L}{10^5}\right) \left(\frac{C_{010}}{0.5}\right)^2 \left(\frac{0.2 \text{ } K}{T_{sys}}\right)^2$$

Assume Quantum Limited Amplifiers. Then $T_{sys} = \frac{hf}{2k_B} = 0.43$ K. Let $Q_L = 10^5$, SNR = 3.5, $V_{eff} = VC_{lmn}$, f = 18GHz. If

$$rac{df}{dt} = 1 {
m GHz}/{
m year}, ext{ then } B^2 V_{eff} = 200 {
m LT}^2$$

- 1. Dielectric haloscopes could look for $\sim 100 \mu eV$ axions.
- 2. ADMX Orpheus experiment is a haloscope consisting of a Fabry-Perot Cavity loaded with evenly-spaced dielectrics. It will explore 15 to 18 GHz.
- 3. Room-temperature table top resonators have been characterized. Improvements underway.
- 4. Cryogenic setup in development.
- 5. First results in 2-3 years.

Support was provided by the Heising Simons Foundation and the U.S. Department of Energy through Grants No. DE-SC0009723,No. DE-SC0010296, No. DE-FG02-96ER40956, No. DEAC52-07NA27344, and No. DE-C03-76SF00098.