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Searching for Axions with the ADMX Haloscope

Pa ∝ B2
extQVeff , Veff =

|∫ dV ~Bext ·~Ea|2

B2
ext

∫
dV εr |~Ea|2
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Becomes increasingly difficult at higher frequency

Pa ∝ B2
extQVeff , Veff =

|∫ dV ~Bext ·~Ea|2

B2
ext

∫
dV εr |~Ea|2

Resonator wall ~Ea
~Bext

∣∣∣∫ dV ~Bext · ~Ea

∣∣∣ > 0, V is small

V is large,
∣∣∣∫ dV ~Bext · ~Ea

∣∣∣ = 0
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Solution: Dielectric Haloscopes

Higher frequency with more volume and better axion coupling.

Pa ∝ B2
extQVeff , Veff =

|∫ dV ~Bext ·~Ea|2

B2
ext

∫
dV εr |~Ea|2

Resonator wall ~Ea
~Bext Dielectric

Low-loss dielectric ∼ λ/2 thick placed every other half-wavelength.

V is large,
∣∣∣∫ dV ~Bext · ~Ea

∣∣∣ > 0

5 / 27



ADMX Orpheus Concept

Goal: Dielectrically Loaded Fabry-Perot Open Resonator threaded
by a dipole magnet. Tunes with cavity length. Search for axion-like
particles at 15-18 GHz.

Open → Less ohmic losses → higher Q.
Open → Sparser spectrum → less mode crossings.
Challenges:
I Designing optics. Maintain good mode with high Q from

15-18 GHz.
I Moving mirror and dielectrics in LHe.
I Obtaining dipole magnet.

6 / 27



Orpheus Science Reach

Within a few years.

+10.1103/PhysRevD.91.011701
*arXiv:1403.4594 7 / 27



Progress Towards Orpheus: Preliminary Cryogenic Design

Submerged in LHe.

Think of an accordian!
8 / 27



Room-Temperature Prototyping

Cheap and fast prototyping. Test mechanics and electronics.

Strategy

1. Study empty cavity.
Get analytical
solution, simulations,
and measurement to
agree with each other.
Gain confidence.

2. Load cavity with
dielectrics. Simulate
and measure. See if
they agree.
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Standing waves in FP Cavities

Sustain TEMmnq modes. Think of Gaussian beams.
m, n: nodes in transverse plane. q: nodes along cavity.
Analytical formula:
fmnq = (q + 1)fo + (fo/π)(1 + m + n) cos−1(1− 2L/ro), fo = c

4L
Mirror focusing to reduce diffraction.
Mode tunes with cavity length.
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Simulation Transmission of TEM00−18 mode
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Measure Transmission of TEM00−18 mode
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Cavity Length = 17cm

QL between 1000 and 5000. Measured Qs don’t match simulation,
perhaps because of different coupling.
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Empty Orpheus Mode Map
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Empty Orpheus Mode Map
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Simulations agree with analytical formula.
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Empty Orpheus Mode Map
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Resonant frequencies for analytical formula, simulation, and
experiment agree!
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Empty Orpheus Mode Map
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Resonant frequencies for analytical formula, simulation, and
experiment agree!
Other modes where predicted. No mode crossings!
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Room-Temperature Prototyping with Delrin

TEM00−18 mode is the good mode for axion coupling.
Can we track this mode while we tune it?
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Delrin: Predict resonant frequency through simulation
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εr = 3.7 at 100 Hz. Don’t know at 15-18 GHz.
Simulation done with lossless Delrin. QL comparable to empty
resonator for this frequency at this cavity length.
Q depends highly depends on loss tangent and impedance
changing parameters (e.g. mirror thickness, hole aperture size).
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Delrin setup: Measure Transmission of TE00−18 mode
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Q is much lower, as expected. Delrin is very lossy.
Will need better dielectrics to understand substructure.
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Delrin setup mode map
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Mode structure is apparent but messier. Expected with lower Q.
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Delrin setup mode map
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Mode structure is apparent but messier. Expected with lower Q.

Simulation resonances agree with experiment. Should be better
with improved mechanical structure. Also, don’t know εr .
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Delrin setup mode map
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Mode structure is apparent but messier. Expected with lower Q.

Simulation resonances agree with experiment. Should be better
with improved mechanical structure.

Better Q would allow us to understand substructure.
22 / 27



Progress Towards Orpheus: Magnet Making

3,250 windings. Niobium titanium wire 0.3 mm in diameter. 1 T.

Prototyping different manufacturing methods.
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Next Steps

I Improve mechanical design.

I Improve and understand optics.

I Develop DAQ, electronics, and motor systems.

I Cryogenic tests.

First results in 2-3 years.
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How to get to DFSZ sensitivity

Scan rate equation from ADMX

Assume Quantum Limited Amplifiers. Then Tsys = hf
2kB

= 0.43K.

Let QL = 105,SNR = 3.5,Veff = VClmn, f = 18GHz. If

df
dt = 1GHz/year, then B2Veff = 200LT2
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Summarize

1. Dielectric haloscopes could look for ∼ 100µeV axions.

2. ADMX Orpheus experiment is a haloscope consisting of a
Fabry-Perot Cavity loaded with evenly-spaced dielectrics. It
will explore 15 to 18 GHz.

3. Room-temperature table top resonators have been
characterized. Improvements underway.

4. Cryogenic setup in development.

5. First results in 2-3 years.
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