Quantum Sensors and the Fundamental Limits of Electromagnetic Axion and Hidden-Photon Searches Kent Irwin Stanford University

3rd Workshop on Workshops on Microwave Cavities and Detectors for Axion Research

> Livermore, CA August 23, 2018

> > Stanford University

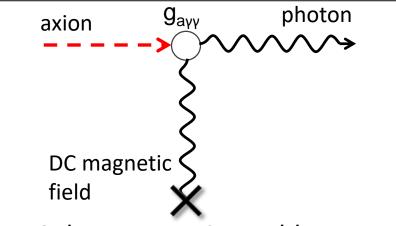
1. Fundamental limits

- What is the fundamental limit of sensitivity of a search using a single electromagnetic mode, passive impedance matching, and a phase-insensitive amplifier at the quantum limit?
- What is the optimal scan strategy, given a set of priors?
- Is a single-pole resonant circuit optimal, or can we do better?
- The above strongly motivate quantum sensors
- 2. Quantum sensors < 300 MHz:
 - backaction evasion and the Zappe Photon Upconverter (ZPU)

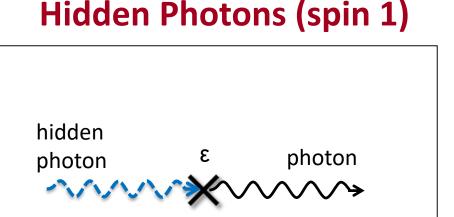
Stanford: Arran Phipps, Dale Li, Saptarshi Chaudhuri, Peter Graham, Jeremy Mardon, Hsiao-Mei Cho, Connor FitzGerald, Stephen Kuenstner, Carl Dawson, Betty Young, Cyndia Yu, Kent Irwin

Arxiv:1803.01627, "Quantum Limits for Electromagnetic Axion and Hidden-Photon Dark Matter Searches" S. Chaudhuri, K. Irwin, P. Graham, J. Mardon

Axions (spin 0)



- Solves strong CP problem
- Converts to photon via inverse Primakoff effect- requires background EM field
- Photon frequency gives mass, hv=mc²
- ~10⁻⁶ bandwidth set by DM virial velocity



- Appears in generic extensions of Standard Model, may be produced by cosmic inflation
- Converts via kinetic mixing
- Photon frequency gives mass, hv=mc²
- ~10⁻⁶ bandwidth set by DM virial velocity

Ultralight, high number density → Look for classical, oscillating EM field

Outline

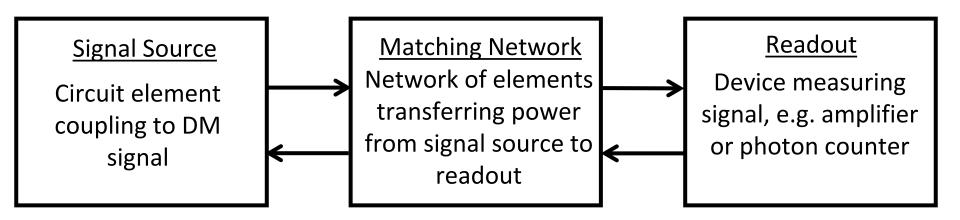
• Receiver circuit model

- Standard quantum limit
- Optimizing the matching network
 - Integrated sensitivity
 - Bode-Fano Limit
 - Single-pole resonators are 75% of Bode-Fano Limit
- How do we improve our science limit?
 - Use multiple modes
 - Get colder
 - Use active feedback matching circuits
 - Measure below SQL with quantum sensors
- Quantum sensors below 300 MHz

Receiver circuit model: schematic

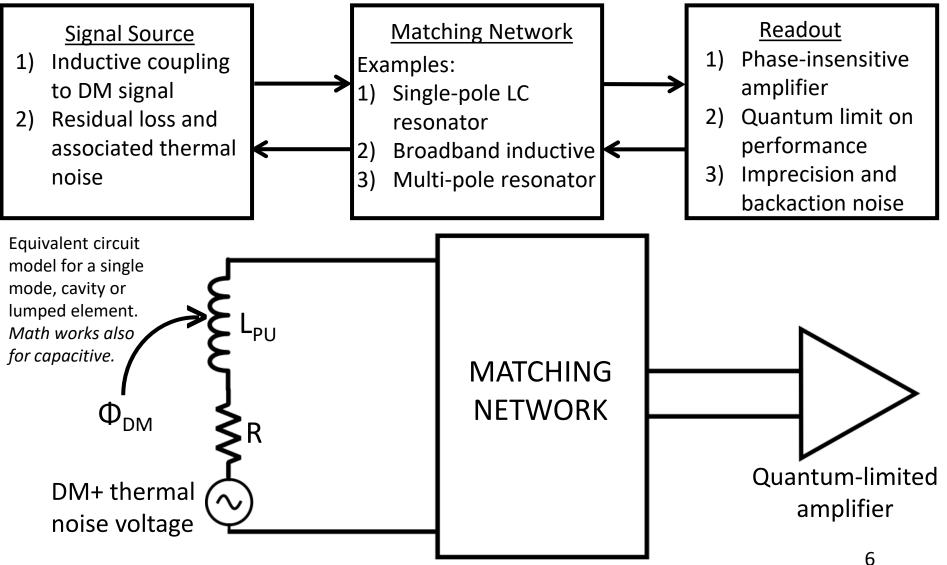
What is the fundamental limit of sensitivity of a search using

- a single electromagnetic mode
- passive impedance matching, and
- a phase-insensitive amplifier at the quantum limit?



To arrive at fundamental limits, optimize each block and interactions across blocks.

Model for axion / hidden photon detection through electromagnetism



Outline

- Receiver circuit model
- Standard quantum limit
- Optimizing the matching network
 - Integrated sensitivity
 - Bode-Fano Limit
 - Single-pole resonators are 75% of Bode-Fano Limit
- How do we improve our science limit?
 - Use multiple modes
 - Get colder
 - Use active feedback matching circuits
 - Measure below SQL with quantum sensors
- Quantum sensors below 300 MHz

Standard Quantum Limit (SQL) on amplification

- Phase-insensitive amplifier: both sine and cosine components of signal ("quadratures") are amplified equally
- Subject to Standard Quantum Limit: Heisenberg uncertainty on noise performance
 - H.A. Haus and J.A. Mullen, Phys. Rev. **128**, 407 (1962)
 - Caves, PRL 26, 1817 (1982)
 - Modern review: Clerk et al, RMP **82**, 1155 (2010)
- SQL=1 photon of noise added by the measurement
 - 1 photon= increase required in thermal occupation number of circuit for change in thermal noise to equal amplifier noise

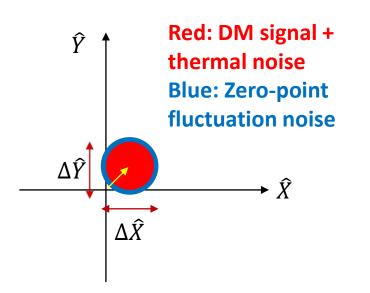
Standard Quantum Limit (SQL) on amplification

SQL=1 photon

Zero-point fluctuation noise (1/2)

• Quadrature measurements \hat{X} (cosine) and \hat{Y} (sine) applied to vacuum have nonzero variance \rightarrow noise

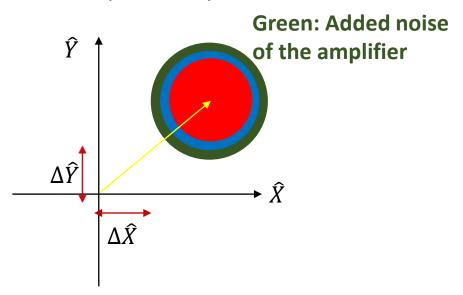
Amplifier Input



Amplifier noise (1/2)

• Noise added upon amplification from simultaneously measuring two noncommuting operators, $[\hat{X}, \hat{Y}] = i$

Amplifier Output



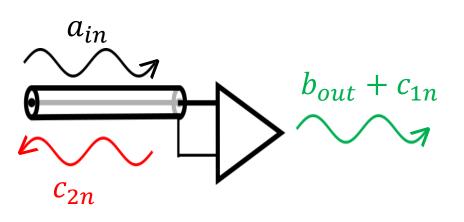
Amplifier noise = imprecision + backaction

Amplifier has two effective noise modes

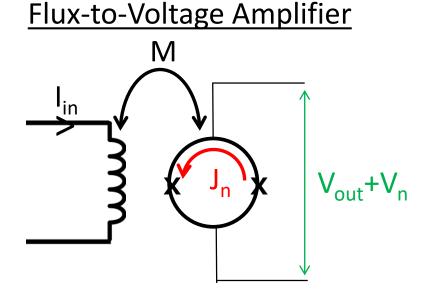
- Imprecision noise: independent of input circuit
- Backaction noise: dependent on input circuit

Amplifier noise = imprecision + backaction

Scattering-mode Amplifier



- E.g. JPAs, used in ADMX, HAYSTAC
- Incoming wave a_{in} amplified, giving output wave b_{out}
- Imprecision noise: intrinsic noise wave
 c_{1n} at output
- Backaction noise: noise wave c_{2n} injected into input circuit
- Reflects off input circuit, appears as more noise at output

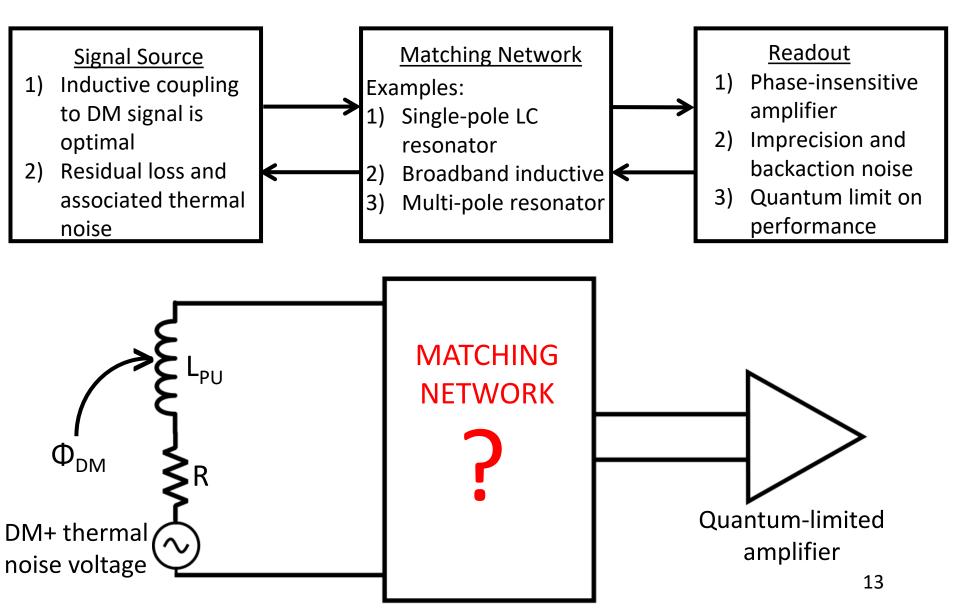


- E.g. SQUIDs, used in DM Radio, ABRACADABRA
- Input current I_{in} feeds flux into loop, giving output voltage V_{out}
- Imprecision noise: intrinsic voltage fluctuations V_n at output
- Backaction noise: circulating noise currents J_n couple voltage to input
- Creates noise currents in input, appears as more noise at output¹

Outline

- Receiver circuit model
- Standard quantum limit
- Optimizing the matching network
 - Integrated sensitivity
 - Bode-Fano Limit
 - Single-pole resonators are 75% of Bode-Fano Limit
- How do we improve our science limit?
 - Use multiple modes
 - Get colder
 - Use active feedback matching circuits
 - Measure below SQL with quantum sensors
- Quantum sensors below 300 MHz

How do we optimize matching network?



Value function for matching optimization

- Value function needs to reflect:
 - Signal-to-noise ratio (SNR)
 - Priors- Favored mass or coupling range? Candidate signal to validate?
- Value function is expectation value of SNR squared: $U[S(v)] = E[SNR^2 [S(v)]]$
- S(v)=scattering matrix for the network
- Expectation is evaluated with user-defined preference functions for DM properties, e.g. mass
- Log-uniform search
 - Uninformative priors on DM
 - DM mass uniformly likely in log space
 - Want sensitivity as large as possible over as wide a bandwidth as possible

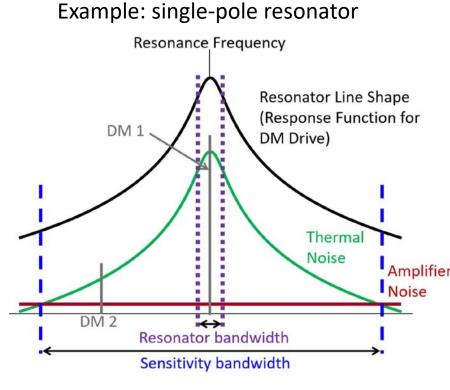
Log-uniform search: optimize integrated sensitivity

- Maximize integrated sensitivity across search band, between v₁ and v_h
- Figure of merit with quantum-limited amplifier:

$$U[S(v)] = \int_{v_l}^{v_h} dv \left(\frac{|S_{21}(v)|^2}{|S_{21}(v)|^2 n(v) + 1}\right)^2$$

- n(v)= signal source thermal occupation number
- "+1" is standard quantum limit

Quantum-limited amplifiers highly desirable even for thermal states hf<kT. (Measuring below SQL even better)



How large can sensitivity U be? Bode-Fano limit

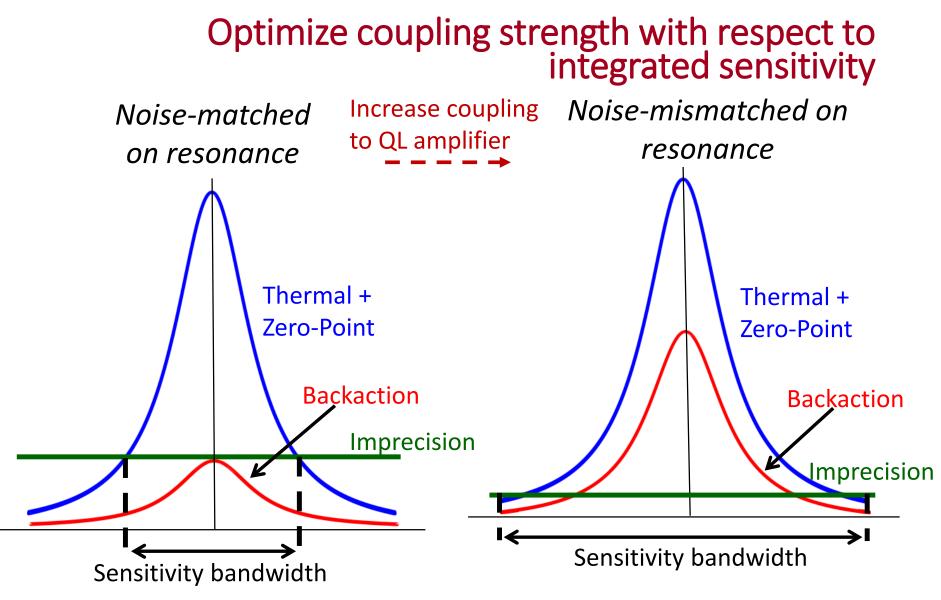
- Constraint provided by Bode-Fano criterion for matching LR to a quantum-limited amplifier with a real noise impedance:
 - H.W. Bode, ``Network Analysis and Feedback Amplifier Design" (1946)
 - R.M. Fano, Journal of the Franklin Institute (1950)
- Assume matching network is linear, passive, and reciprocal.

Bode-Fano
$$\int_{\nu_l}^{\nu_h} d\nu \ln\left(\frac{1}{|S_{22}(\nu)|}\right) \leq \frac{R}{2L_{PU}} \Rightarrow$$

Bode-Fano-
limited U
$$U[S(\nu)] \leq \begin{cases} \frac{1}{4n(\nu_h)} \frac{R}{L_{PU}}, & n(\nu_h) \gg 1\\ 0.41 \frac{R}{L_{PU}}, & n(\nu_h) \ll 1 \end{cases}$$

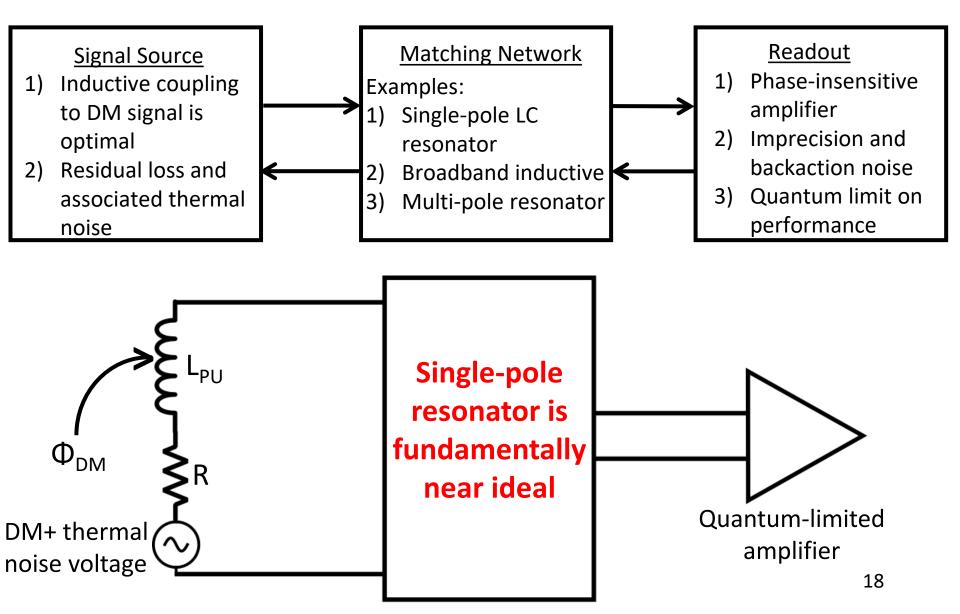
• Analogous constraint for RC signal source

An *optimal* single-pole resonator can have a figure of merit *U* that is ~75% of the fundamental limit (pretty good!)



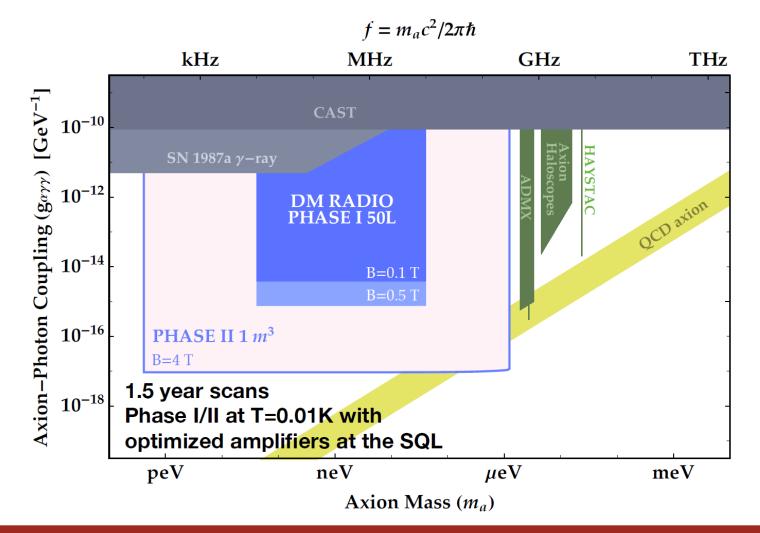
- Increased coupling: reduced imprecision, increased backaction
- 50% on-resonance noise penalty. Much larger sensitivity bandwidth

Completing our optimal detector!



SQL for DM Radio from Arran's Talk

Axion Sensitivity



Outline

- Receiver circuit model
- Standard quantum limit
- Optimizing the matching network
 - Integrated sensitivity
 - Bode-Fano Limit
 - Single-pole resonators are 75% of Bode-Fano Limit
- How do we improve our science limit?
 - Use multiple modes
 - Get colder
 - Use active feedback matching circuits
 - Measure below SQL with quantum sensors
- Quantum sensors below 300 MHz

Quantum noise in a harmonic oscillator

The Hamiltonian of a harmonic oscillator is

$$\widehat{H} = \hbar \omega \big(a^{\dagger} a + 1/2 \big)$$

The Hamiltonian can be written in the cosine component (\hat{X}) and the sine component (\hat{Y})

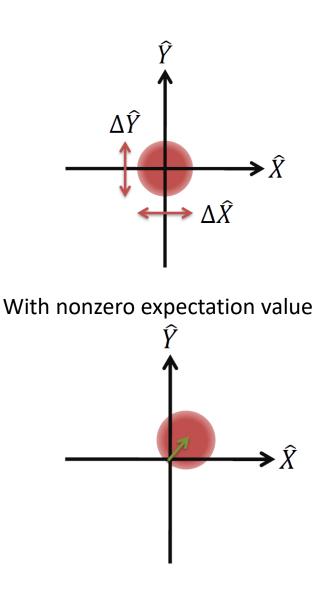
$$\widehat{H} = \frac{\hbar\omega}{2} \left(\widehat{X}^2 + \widehat{Y}^2 \right)$$

$$[\widehat{X}, \widehat{Y}] = \mathsf{i}$$

$$\Delta \hat{X} \Delta \hat{Y} \geq \frac{1}{2} \qquad \text{vacuum noise}$$

When amplified, add one more 1/2 quantum

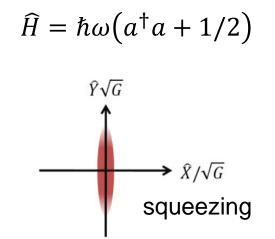
$$N_{add} \ge \frac{1}{2}$$



Quantum sensing

- If we don't need to measure both quadratures of a field, we don't have to be limited by the standard quantum limit.
- The standard quantum limit can be evaded using quantum correlations. These techniques are deeply related:

- Backaction evasion
- Entanglement
- Cooling
- Quantum nondemolition



Outline

- Receiver circuit model
- Standard quantum limit
- Optimizing the matching network
 - Integrated sensitivity
 - Bode-Fano Limit
 - Single-pole resonators are 75% of Bode-Fano Limit
- How do we improve our science limit?
 - Use multiple modes
 - Get colder
 - Use active feedback matching circuits
 - Measure below SQL with quantum sensors

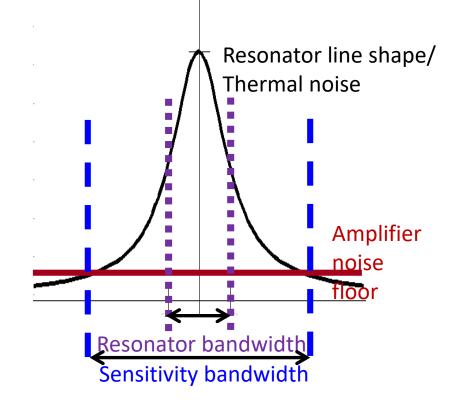
• Quantum sensors below 300 MHz

Quantum sensing of thermal states

 $\hbar \omega < k_B T$ Thermal state

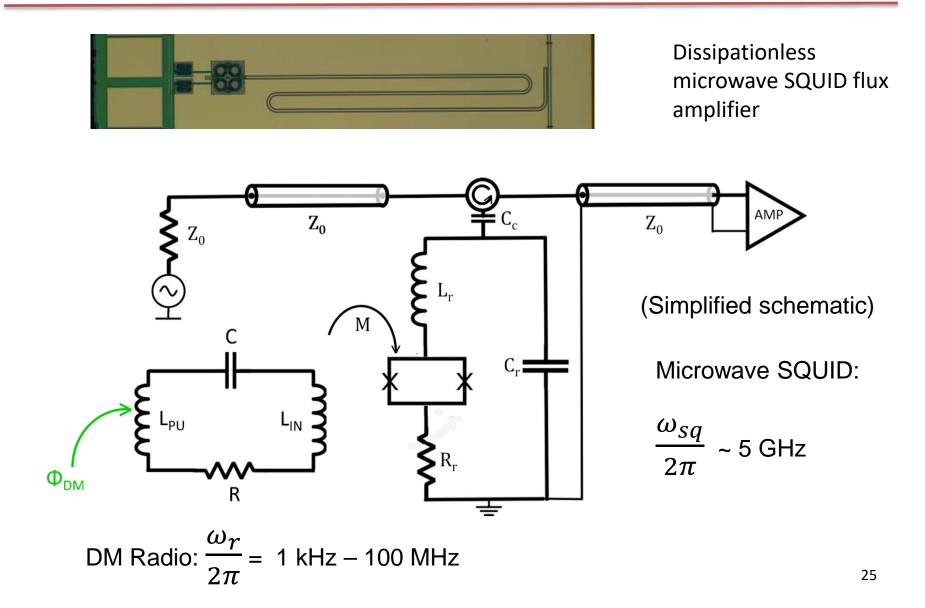
Why would we use a quantum sensor for a thermal state?

- The signal to noise within the resonator bandwidth is not helped by a better amplifier.
- The sensitivity of the amplifier determines the *sensitivity bandwidth*, and thus the sensitivity of a search for an unknown signal frequency.
- Very large speedup possible for a sensor operating below the standard limit even if $\hbar \omega < k_B T$

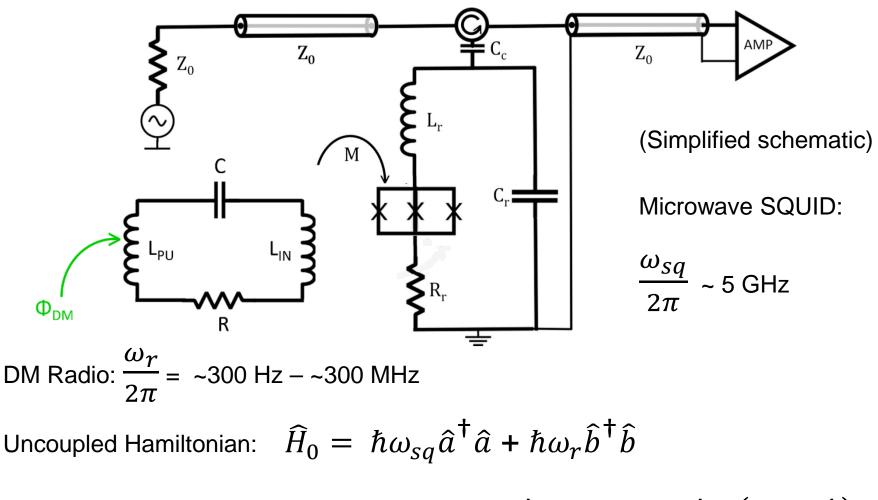


Quantum sensors are needed for low-frequency thermal states too

Measuring a resonator with a dissipationless microwave SQUID frequency upconverter



Measuring a resonator with a dissipationless Zappe Photon Upconverter (ZPU)



Interaction Hamiltonian: $\widehat{H}_{int} = -\hbar G \widehat{\Phi}_{in} \widehat{a}^{\dagger} \widehat{a} = -\hbar g_0 \widehat{a}^{\dagger} \widehat{a} \left(\widehat{b} + \widehat{b}^{\dagger} \right)$

Hamiltonian maps onto optomechanical system

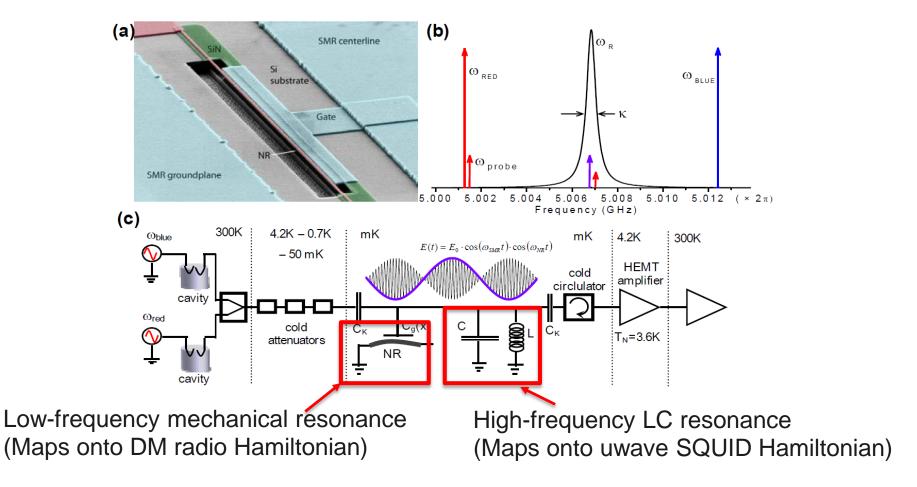
DM Radio:
$$\frac{\omega_r}{2\pi} = -300 \text{ Hz} - -300 \text{ MHz}$$
 Microwave resonator: $\frac{\omega_{sq}}{2\pi} - 5 \text{ GHz}$
Uncoupled Hamiltonian: $\hat{H}_0 = \hbar \omega_{sq} \hat{a}^{\dagger} \hat{a} + \hbar \omega_r \hat{b}^{\dagger} \hat{b}$
Interaction Hamiltonian: $\hat{H}_{int} = -\hbar G \hat{\Phi}_{in} \hat{a}^{\dagger} \hat{a} = -\hbar g_0 \hat{a}^{\dagger} \hat{a} \left(\hat{b} + \hat{b}^{\dagger} \right)$

This maps onto the Hamiltonian of on optomechanical resonator with:

Displacement r	\leftrightarrow	Flux Φ
Momentum p	\leftrightarrow	Charge Q
Inverse spring constant 1/k	\leftrightarrow	Inductance L
Mass m	\leftrightarrow	Capacitance C

Nonlinear interaction upconverts photons from the DM Radio resonator to the uwave SQUID, downconverts uwave SQUID photons to the DM Radio, leading to backaction

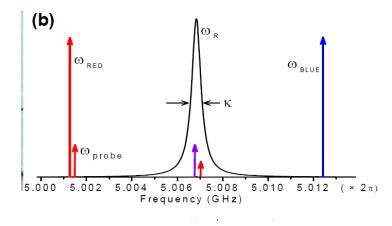
Hamiltonian maps onto optomechanical system



Hertzberg, J. B., Rocheleau, T., Ndukum, T., Savva, M., Clerk, A. A., & Schwab, K. C. (2010). Back-action-evading measurements of nanomechanical motion. *Nature Physics*, *6*(3), 213-217.

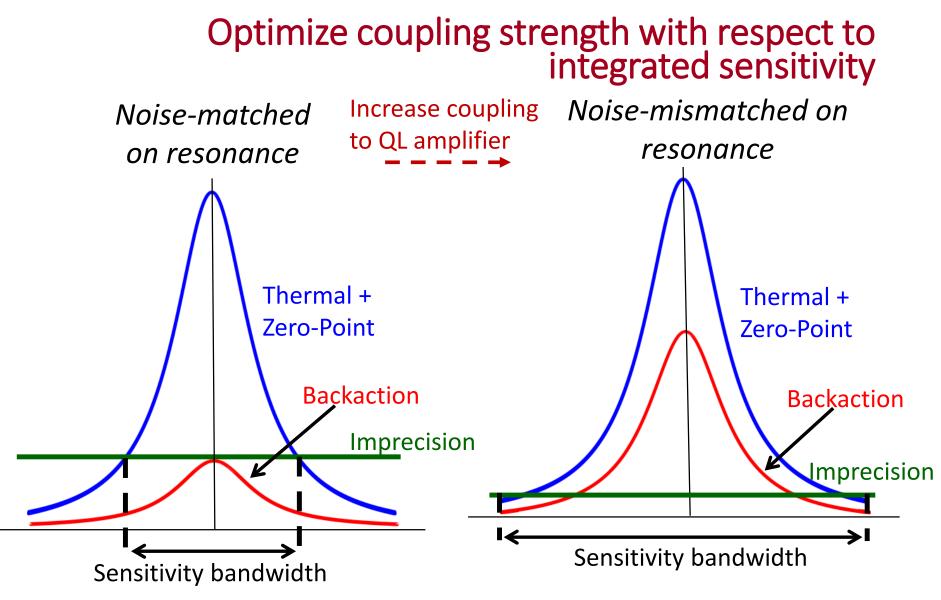
Back-action Evasion

- Originally proposed by Braginsky (1980) for gravitational wave detectors.
- With proper device symmetry, when both sidebands are pumped, the back-action is applied only to the unmeasured quadrature. Allows much stronger coupling, and reduction of both imprecision and back-action noise.



Squeezing, cooling, other quantum protocols possible

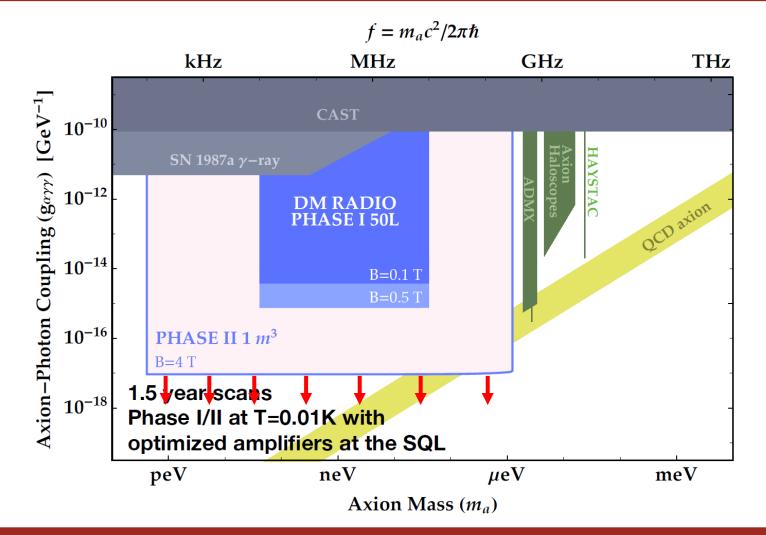
Back-action Evasion with microwave SQUID requency upconverters is a promising quantum protocol for DM Radio



- Increased coupling: reduced imprecision, increased backaction
- 50% on-resonance noise penalty. Much larger sensitivity bandwidth

Measuring below the SQL

Axion Sensitivity



Conclusions

- One-pole resonators are nearly optimal for single-mode dark-matter searches (75% saturation of Bode-Fano Limit)
- Significant sensitivity outside of the resonator bandwidth
 - Larger scan steps possible: with Q~1e6, at 1 MHz SQL, we would likely have 40 Hz scan steps, rather than 1 Hz.
- Strong encouragement to improve limits with quantum sensors, even for resonators in a thermal state (< 300 MHz)
- Zappe Photon Upconverters promising for backactionevasion to measure below the SQL in experiments < 300 MHz, including DM Radio (and others).

