DM Radio

Searching for Ultra-Light-Field Dark Matter

Arran Phipps Stanford University Irwin Group

DM Radio DJs

Arran Phipps, Saptarshi Chaudhuri, Stephen Kuenstner, Carl Dawson, Dale Li, Hsiao-Mei (Sherry) Cho, Betty Young, Connor Fitzgerald, Kevin Wells, Henry Froland, Peter Graham, Kent Irwin

What is DM Radio?

- A superconducting, tunable lumped-element LC resonator
- Initially read out by a DC SQUID, will be replaced by an optimized quantum sensor we are developing through a separate project

dark matter signal

- Searching for axion/hidden photon dark matter from peV to μ eV
 - Compton wavelength >> dimensions of experiment
 - Dark matter signal has simple cos(ωt) dependence

Possible Candidates

<u>Axions</u>

- Spin-0 pseudoscalars
- Possible solution to strong-CP problem
- Many other axion-like particles (ALPs)
- Detection via inverse Primakoff effect, requires DC B-field

Hidden Photons

- Massive spin-1 vector bosons
- Non-thermal production via misalignment mechanism, inflationary fluctuations
- Interacts with photons through kinetic mixing

 $\mathcal{L}_{int} \sim \varepsilon F^{\mu\nu} F'_{\mu\nu}$

Not a real current! Does not carry charge

photon No DC B-field required axion Both candidates appear as an $abla imes ec{B} \propto ec{J}_{
m DM}$ *effective* source term in dc magnetic Maxwell's equations field

Axions – plenty of room at the bottom!

Axions – plenty of room at the bottom!

Hidden Photons – plenty of room at the bottom!

Hidden Photons – plenty of room at the bottom!

 Hidden photons penetrate superconductors, acts as an effective AC current

 $\vec{B}_{\rm HP}(t) = \left| \vec{B}_{\rm HP}(t) \right| \hat{\phi}$

- Hidden photons penetrate superconductors, acts as an effective AC current
- Generates a REAL circumferential, quasi-static B-field

- Hidden photons penetrate superconductors, acts as an effective AC current
- Generates a REAL circumferential, quasi-static B-field
- Screening currents in superconductor flow to cancel field in bulk

Meissner Effect

- Cut concentric slit at bottom of sheath
- Screening currents continue to flow along outer surface

- Cut concentric slit at bottom of sheath
- Screening currents continue to flow along outer surface
- Add an inductive loop to siphon some of the screening current

- Cut concentric slit at bottom of sheath
- Screening currents continue to flow along outer surface
- Add an inductive loop to siphon some of the screening current
- Sense with SQUID or quantum sensor

Top-Down Cross-section

(B₀ toroid *inside* sheath)

- Toroidal coil produces DC magnetic field inside superconducting sheath
- Axions interact with DC field, acts as an effective AC current along direction of applied field

$$\vec{J_a} = |\vec{J_a}| \,\hat{\phi}$$

- Toroidal coil produces DC magnetic field inside superconducting sheath
- Axions interact with DC field, acts as an effective AC current along direction of applied field
- Produces REAL quasi-static AC magnetic field

 Screening currents in superconductor flow to cancel field in bulk

Meissner Effect

- Screening currents in superconductor flow to cancel field in bulk
- Cut a slit from top to bottom of the superconducting sheath

- Screening currents continue along outer surface
- Use inductive loop to siphon some of the screening current
- Readout with SQUID or quantum sensor

Broadband Detectors

Broadband Hidden Photon Detector

Broadband Axion Detector

- Can operate broadband no need to scan over frequency
- Weak signal
- Long integration times

LC Oscillator Hidden Photon Configuration

- Signal can be enhanced through the use of a resonator
 - Near-optimal method, see Kent Irwin's talk
- Add a tunable lumped-element resonator to ring up the magnetic fields sourced by local dark matter
- Tune dark matter radio over frequency span to hunt for signal
 - Short integration at each step

LC Oscillator Hidden Photon Configuration

inches

72-turn NbTi Toroidal Coil

LC Oscillator Hidden Photon Configuration

Nb Hex Capacitor

Sapphire plates (not shown) used to tune

LC Oscillator Axion Configuration

- Signal can be enhanced through the use of a resonator
 - Near-optimal method, see Kent Irwin's talk
- Add a tunable lumped-element resonator to ring up the magnetic fields sourced by local dark matter
- Tune dark matter radio over frequency span to hunt for signal
 - Short integration at each step

Equivalent Circuit Model

Looking for excess power above thermal noise

To maximize signal-to-noise...

Large volume:

$${
m SNR} \propto V^{5/6}$$
 (in amplitude)

 $\propto Q^{1/4}$

Minimize R (sets Q):

• Goal:
$$Q \sim Q_{\rm DM} \sim 10^6$$

- Decrease temperature: $\propto T^{-1/2}$
- Minimize readout noise
 - Determines scan depth/time
 - Still want quantum-limited amps!

Equivalent Circuit Model

Looking for excess power above thermal noise

To maximize signal-to-noise...

• Large volume:

$$\mathrm{SNR} \propto V^{5/6}$$

More details: See Kent Irwin's talk or Chaudhuri et al **Fundamental limits of electromagnetic axion and hidden-photon dark matter searches** arXiv:1803.01627

- Minimize readout noise
 - Determines scan depth/time
 - Still want quantum-limited amps!

DM Radio Pilot

4K Dip Probe

700 mL Pilot construction through SLAC LDRD

- Focus on hidden photons
- T=4K (Helium Dip Probe)
- Frequency/Mass Range:
 - 100 kHz 10 MHz / 500 peV 50 neV

DM Radio Fixed Resonator

Resonator

- 40-turn NbTi coil (~53 uH)
- 2 nF sapphire capacitor
- Resonance at ~500 kHz
- 100 mL detection volume

Pickup Transformer

- Equivalent to "slitted sheath"
- Single-turn coil (~750 nH)
- Connected to SQUID input coil

Readout

- Re-purposed SQUID we designed for TES readout
- Nb wirebonds to input coil

Calibration

- Single-turn injection coil
- Direct injection into transformer coil

DM Radio Fixed Resonator

Q-factor improvement from 2,800 \rightarrow 44,380

- Switch to Nb wirebonds
- Remove or solder-coat all normalmetal hardware
- Clean up amplifier noise

About 30 bandwidths of out-of-band sensitivity!

Preliminary check: No 5σ power excess

Higher Q expected from Pilot

- 10x higher characteristic impedance
- Vacuum-gap Nb capacitor
- Better B-field containment

DM Radio Fixed Resonator

Hidden Photon Sensitivity

Axion Sensitivity

Program Status

Detector	Detector Volume	Target Candidates	Operating Temp	Frequency/Mass Range	Status
Fixed Resonator	100 mL	Hidden photons	4.2 K	500 kHz 1 neV	Analysis
Pilot	700 mL	Hidden photons	4.2 K	100 kHz – 10 MHz 500 peV – 50 neV	Science scans begin Fall 2018
Phase I	50 L	Hidden photons and axions	10 mK	10 kHz – 10 MHz 50 peV – 50 neV	Dil. fridge arrives Nov. 2018
Phase II	1 m ³	Hidden photons and axions	10 mK	100 Hz – 300 MHz ~1 peV – ~1 μeV	Planning

With a dilution refrigerator...

- Use aluminum instead of Nb
- Add magnetic field for axions
- Quantum-limited amplifiers

Conclusions

DM Radio:

A Superconducting Lumped-Element Dark Matter Detector For Axions and Hidden Photons

Chaudhuri et al., **Radio for hidden-photon dark matter detection** Phys. Rev. D 92, 075012 (2015) / arXiv:1411.7382

Chaudhuri et al., Fundamental limits of electromagnetic axion and hidden-photon dark matter searches arXiv:1803.01627

Silva-Feaver et al., **Design Overview of the DM Radio Pathfinder Experiment** IEEE Transactions on Superconductivity 27, no. 4 (2017) / arXiv:1610.09344

Graham and Scherlis, **The Stochastic Axion Scenario** arXiv:1805.07362

Graham, Mardon, and Rajendran, Vector dark matter from inflationary fluctuations Phys. Rev. D 93, 103520 (2016) / arXiv:1504.02102

HEISING-SIMONS