Magnetic shielding and source-mass characterization in the ARIADNE axion experiment

Microwave Cavities and Detectors for Axion Research at LLNL - Aug 21-24th, 2018

Chloe Lohmeyer

Axion Resonant InterAction DetectioN Experiment

Collaborators: Andrew Geraci (Northwestern), Asimina Arvanitaki (Perimeter), Aharon Kapitulnik (Stanford), Alan Fang (Stanford), Sam Mumford (Stanford), Josh Long (IU), Chen-Yu Liu (IU), Mike Snow (IU), Inbum Lee (IU), Justin Shortino (IU), Yannis Semertzidis (CAPP), Yun Shin (CAPP), Yong-Ho Lee (KRISS), Lutz Trahms (PTB), Allard Schnabel (PTB), Jens Voigt (PTB)

Grant No. PHY-1509176, 1510484, 1506508

Center for Fundamental Physics (CFP)

Axion and ALP Searches

Source

Coupling

	Photons	Nucleons	Electrons
Dark Matter (Cosmic) axions	ADMX, HAYSTACK, DM Radio, LC Circuit, MADMAX, ABRACADABRA	CASPEr	QUAX
Solar axions	CAST IAXO		
Lab-produced axions	Light-shining-thru- walls (ALPS, ALPS-II)	ARIADNE	

Axion-exchange between nucleons

• Scalar Coupling $\propto \theta_{OCD}$

• Pseudoscalar coupling

$$\mathcal{L} \supset \frac{\theta_{QCD}}{f_a} \mu \ a \bar{\psi} \psi$$

$$\mathcal{L} \supset \frac{\partial_{\mu} a}{f_a} \bar{\psi} \gamma_{\mu} \gamma_5 \psi$$

In the non-relativistic limit:

Axion acts as a force mediator between nucleons

$$\mathcal{L} \supset \frac{\vec{\nabla}a}{f_a} \cdot \vec{\sigma}$$

 $(g^{N})^{2}$ $(g_s^N)^2$ $g_s^N g_P^N$ Monopole-dipole Monopole-monopole Dipole-dipole

Spin-Dependent Forces

A. Arvanitaki and A. Geraci, Phys. Rev. Lett. 113, 161801 (2014)

Fictitious magnetic field

- Different from an ordinary magnetic field
- Does not couple to angular momentum
- Does not obey Maxwell's Equations
- Unaffected by magnetic shielding

NMR for detection

 $B_{eff} = B_{\perp} \cos(\omega t)$

- Time varying B_{eff} drives spin precession
- This produces a transverse magnetization
- Magnetization can be detected using a SQUID

Constraints and Sensitivity

[3] G. Raffelt, Phys. Rev. D 86, 015001 (2012)] [4] G. Vasilakis, et. al, Phys. Rev. Lett. 103, 261801 (2009).
[5] K. Tullney, et. al. Phys. Rev. Lett. 111, 100801 (2013) [6] P.-H. Chu, et. al., Phys. Rev. D 87, 011105(R) (2013).
[7] M. Bulatowicz, et. al., Phys. Rev. Lett. 111, 102001 (2013).

Experimental Setup

Laser Polarized ³He gas

A. Arvanitaki and A. Geraci, Phys. Rev. Lett. 113, 161801 (2014)

Experimental Parameters

11 segments
100 Hz nuclear spin precession frequency
2 x 10²¹ / cc ³He density
10 mm x 3 mm x 150 μm volume
Separation 200 μm
Tungsten source mass (high nucleon density)

Cryostat Design

IU Test Cryostat

<u>Hyperpolarized ³He</u>

• Ordinary magnetic fields cannot be used to reach near unity polarization

 $\exp[-\mu_N B / k_B T]$

Optical pumping techniques

• Metastability exchange optical pumping

Indiana U. MEOP apparatus

Rev. Sci. Instrum. 76, 053503 (2005)

M Batz, P-J Nacher and G Tastevin, Journal of Physics: Conference Series 294 (2011) 012002

Experimental Challenges

Systematic Effect/Noise source	Background Level	Notes
Magnetic gradients	$3 imes 10^{-6} \mathrm{~T/m}$	Limits T_2 to ~ 100 s
		Possible to improve w/shield geometry
Vibration of mass	10^{-22} T	For 10 μm mass wobble at ω_{rot}
External vibrations	$5 imes 10^{-20} \mathrm{T}/\sqrt{\mathrm{Hz}}$	For 1 μ m sample vibration (100 Hz)
Patch Effect	$10^{-21} (\frac{V_{\text{patch}}}{0.1\text{V}})^2 \text{ T}$	Can reduce with V applied to Cu foil
Flux noise in squid loop	$2 \times 10^{-20} \text{ T}/\sqrt{\text{Hz}}$	Assuming $1\mu\Phi_0/\sqrt{\text{Hz}}$
Trapped flux noise in shield	$7 imes 10^{-20} rac{\mathrm{T}}{\sqrt{\mathrm{Hz}}}$	Assuming 10 cm^{-2} flux density
Johnson noise	$10^{-20} (\frac{10^8}{f}) T / \sqrt{Hz}$	f is SC shield factor (100 Hz)
Barnett Effect	$10^{-22} (\frac{10^8}{f})$ T	Can be used for calibration above 10 K
Magnetic Impurities in Mass	$10^{-25} - 10^{-17} (\frac{\eta}{1 \text{ ppm}}) (\frac{10^8}{f}) \text{ T}$	η is impurity fraction (see text)
Mass Magnetic Susceptibility	$10^{-22} (\frac{10^8}{f})$ T	Assuming background field is 10^{-10} T
		Background field can be larger if $f > 10^8$

Table 1: Table of estimated systematic error and noise sources, as discussed in the text. The projected sensitivity of the device is $3 \times 10^{-19} (\frac{1000s}{T_2})^{1/2} T/\sqrt{Hz}$

Thin Film Superconducting Shielding

- Shield out ordinary magnetic noise
- Sputtered Niobium on quartz tubes/different geometries for tests
- Tests of adhesion, Tc, shielding factor done by CAPP and Stanford collaborators

Younggeun Kim, Dongok Kim, Yun Chang Shin, Andrei Matlashov CAPP/IBS

Thin Film Superconducting Shielding

- Measuring mutual inductance between inner and outer coils
- Place sample with coil in the liquid He dewar
- Found position where spectrum analyzer drops (where B field can no longer penetrate into the superconductor)

Younggeun Kim, Dongok Kim, Yun Chang Shin, Andrei Matlashov CAPP/IBS

Thin Film Superconducting Shielding

 With thin films between 250 nm to 1 micron, 7.25 < Tc < 7.5K

• Collaborators at Stanford will also be working towards optimizing Tc

Younggeun Kim, Dongok Kim, Yun Chang Shin, Andrei Matlashov CAPP/IBS

<u>Source Mass</u> <u>Prototype</u>

- Material: tungsten
- 11 segments
- 3.8 cm in diameter

Source Mass Characterization - Magnetic Impurities

Magnetic impurity testing in Tungsten using commercial SQUID magnetometer -- Indiana U

Magnetic impurities below 0.4 ppm

Source Mass Characterization

- Magnetized the wheel with a 30 mT magnet
- Wheel was brought under multichannel SQUID device in shielded room
- After degaussing, the magnetic moment is reduced by one order of magnitude to about 2 pT
- In addition, the wheel generates Johnson noise of some 1-1.5 pT (peak to peak)

Lutz Trahms (PTB)

Source Mass Characterization

- Lowest measurement plane is shown here.
- Radius of the dotted circle is 16.667 mm.
- Wheel was adjusted in X direction and it was spinning around the Y-axis.
- All recordings were done with 250 Hz sampling rate.

Source Mass Characterization - Before Degaussing

Lutz Trahms (PTB)

Source Mass Characterization - After Degaussing

Rotated between 0.25Hz to 0.475Hz

Lutz Trahms (PTB)

Rotational Stability

- Two interferometers pointed at bottom of sprocket
- Distance "d" is found
- Thus, wobble distance "x" can be found using geometry
- Distance Sensitivity 19 pm/ \sqrt{Hz}

Test Mass Assembly

Rod details

Material: Ti6Al4V Diameter: 5 ± .01mm Length: 7.5 ± .1" Ovality: < .0004" Runout: < .0005"

Original runout .0005" reduced to .0003" after bearing attachment

SQUID Development

Custom fabricated SQUID on quartz

Field Noise from SQUID measured inside a magnetically shielded room

Yong-Ho Lee (KRISS)

Future Plans

- Rotational stability testing (Northwestern)
- Improvements to thin film adhesion and Tc (CAPP/Stanford)
- Laser polarized 3He system tests (IU)
- 3He sample spheroidal cavity (Stanford)
- Cryostat building/assembly (Northwestern)
- Continuation of magnetic impurity testing (IU/PTB)
- Integration of SQUID system (KRISS)

Acknowledgements

Group Members (left to right): Chloe Lohmeyer, Andrew Geraci, Chethn Galla, Evan Weisman, Eduardo Alejandro, Cris Montoya

This research is supported by the National Science Foundation (Grant No. PHY-1509176, 1510484, 1506508).

Extra Slides

Superconducting Magnetic Shielding

\rightarrow Essential to avoid Johnson noise

Meissner Effect

• No magnetic flux across superconducting boundary

Method of Images

• Make "image currents" mirrored across the superconducting boundary

Dipole with image

The Problem of Unwanted Images

- ARIADNE uses magnetized spheroid
 - Constant interior field
- Magnetic shielding introduces "image spheroid" Interior field varies
- → variations in nuclear Larmor frequency

But want to drive entire sample on resonance

Flattening Solution

- 1 coil simple configuration
- Expected field from spheroid $\sim 1 \ \mu T$
 - I on the 0.1 1 A range

Gradient Cancellation

98 times flatter I = 1.6 A $s_{\text{Frac}} = 0.17\%$

enabling T_2 of ~100 s

Tuning Solution – "D" Coils

- Tune field with Helmholtz coils
 - Helmholtz field only flat near the center
 - Geometry restrictions prevent the spheroid from being centered in traditional Helmholtz coils
- "D" coils look like Helmholtz coils when their images are included
- Inner straight-line currents cancel
- Outer currents do not

Quartz block assembly

Fabrication/polishing tests in process

Spheroidal Cavity for 3He

Rotational Stability

In descending order: Bearing Backlash

> Motor Bearing Rod Sprocket

Coupler Backlash Plate

