

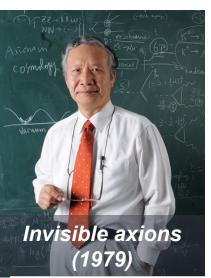
Axion Dark Matter Search at IBS/CAPP

3rd Workshop on Microwave Cavities and Detectors for Axion Research Aug. 21~24 2018 Lawrence Livermore National Laboratory

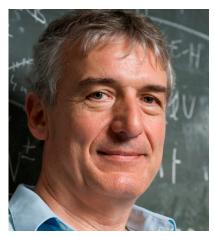
SungWoo YOUN

Center for Axion and Precision Physics Research (CAPP) Institute for Basic Science (IBS)

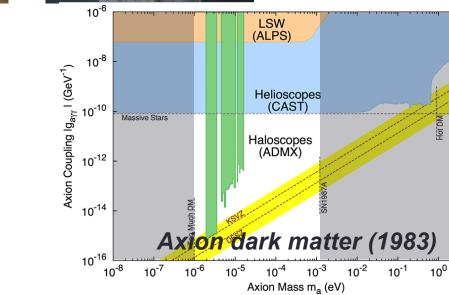
- What is the axion dark matter?
- What do we have at CAPP?
 - Refrigerators / magnets
- What are we doing at CAPP?
 - Magnets / MSA / high frequency cavities
- What experiments are we preparing for at CAPP?
 - CAPP-PACE / CAPP-8TB / CAPP-MC / CAPP-18T
- What do we expect at CAPP?
 - Projected sensitivities



Axion Dark Matter



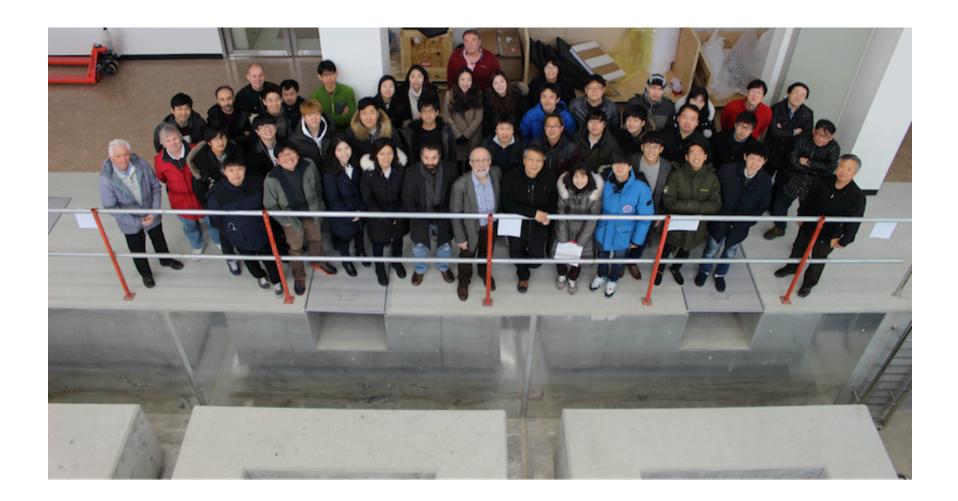
10¹



SungWoo YOUN

3

Haloscope (1983)



SungWoo YOUN

SungWoo YOUN

5

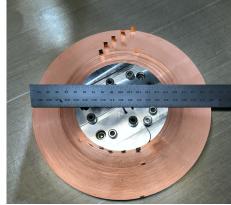
191. 191. (197.) (197.

Refrigerators

	,	5						
Manufacture	Model	Т _в [mK]	С.Р. [µW@mK]	Install -ation	Manufacture	B _{max} [T]	Bore [mm]	Delivery
BlueFors (BF3)	LD400	10	18 @ 20 580 @ 100	2016				
BlueFors (BF4)	LD400	10	18 @ 20 580 @ 100	2016				
Janis	HE-3- SSV	300	25 @ 300	2016	Cryo Magnetics	9	125	2016
BlueFors (BF5)	LD400	10	18 @ 20 580 @ 100	2017	АМІ	8	125	2017
BlueFors (BF6)	LD400	10	18 @ 20 580 @ 100	2017	АМІ	8	165	2017
Oxford	Kelvinox	30	400 @ 120	2017	SuNAM	18	70	2017
Leiden	DRS1000	100	1000 @100	2018	Oxford	12	320	2020
					IBS/BNL	25	100	2020

Magnets

High Field Magnet – IBS/BNL

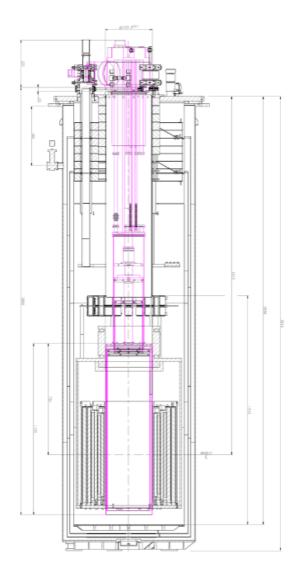


Magnet pa	arameters	
B _{max} (z=0) @ 4 K	25 T	٨
Uniformity	90% (± 100 mm)	
Bore (clear)	100 mm	
Туре	No Insulation	
# of D.P.	14	#
Current Density	500 A/mm ²	Co
Current	450 A	Тс
Stored energy	1.3 MJ	
Inductance	13.1 Henry	
Stress (Azimut.)	< 684 MPa	

- Several SPs were wounded and tested
- First DP was made and ready for • test at 4 K

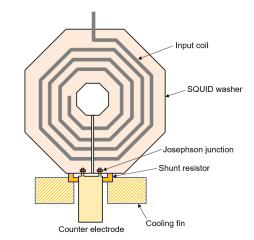
Coil parameters									
Manufacturer	Superpower								
Material	HTS (ReBCO)								
Width	12 mm								
Thickness	75 µm								
# of turns / S.P.	633								
Conductor / S.P.	303 m								
Total conductor	8.5 km								

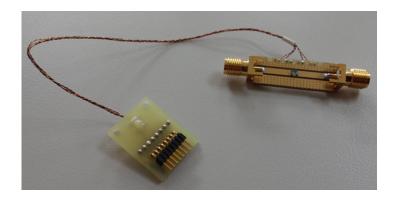
High Field Magnet


Some ADMX Options M. Bird								
1	Approach	Field, Bore	Advantages	Disadvantages				
	LTS Outsert	15 T, 25 cm	Allows new magnet system at modest cost and low risk.	CAPP has already ordered this magnet.				
	TS Outsert + Insulated REBCO	24 T, 16 cm	Insulated REBCO has had the most systematic development to date. Including extensive quench analysis and testing.	No magnet using insulated REBCO is yet operational. (32 T should be soon.)				
A	II NI-REBCO	30 T, 16 cm	Very high current density allows ultra- high field from a compact magnet. All NI-REBCO has been put into service in 24 T magnet by Hahn at CAPP.	20 x the highest stored energy to-date. Testing of intermediate-scale coils required to verify quench protection system.				
	TS <u>Outsert</u> + NI-REBCO	30 T, 16 cm	Stored energy of HTS section is lower than with all-NI approach.	Protection of nested NI-coils is more complicated than of a single NI-coil.				
Bi	i2212, 2223 + LTS	24 T, 16 cm	Bi2223 is a more mature conductor than REBCO. A 24 T coil is operating in Sendai.	Current densities are similar to those of Ins-REBCO.				
A 24 T coil is operating in Sendai. Technology is Evolving Very Quickly. Things we believed 12 months ago were obsolete 6 months ago. Things we believed 6 months ago are obsolete today. Date All options still require R&D. 26								

High Field Magnet – Oxford

- 15T / 250 mm => 12 T / 320 mm
 - Better B²V at the same cost
 - This option is still available for ADMX
- 12 T / 320 mm LTS magnet
 - Order to Oxford
 - Conductor: Nb₃Sn
 - Delivery in 2020
- Will allow us for DFSZ physics between 0.7~ 3.0 GHz within 5 years


197. 197. 世界亦執기會報.

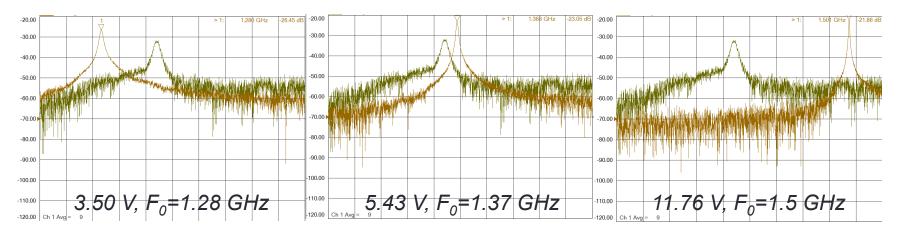

KAIST 1971 MSA - KRISS

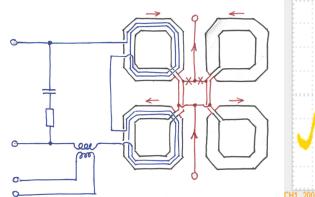
11

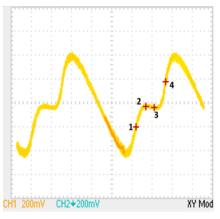
KRISS design: Octagonal washer

$F_0 = 2.2 - 2.5 \text{ GHz}, \Delta F = 100 - 150 \text{ Mz}$	Hz
Gain = 11–19 dB	

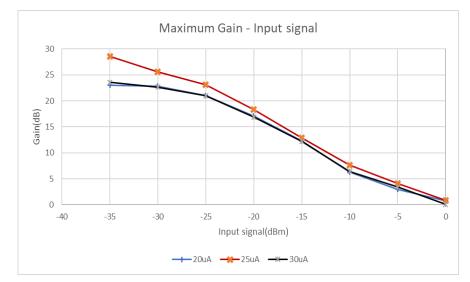
CHIP	Frequency (GHz)	Gain (dB)
3-2 A 19 2.8	2.40	18.7
3-1 B 15 2.7	2.40	15.7
3-2 A 19 1.9	2.40	15.1
3-2 A 19 2.7	2.40	14.3
3-2 A 19 1.8	2.45	13.6
2-12 A 20 2.8	2.30	12.5
3-2 B 15 2.7	2.20	12.2
2-12 A 19 2.8	2.50	11.0

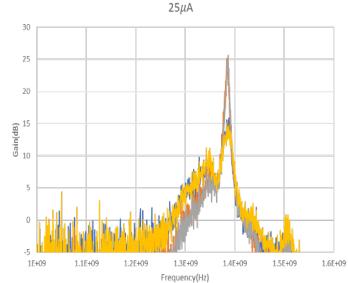


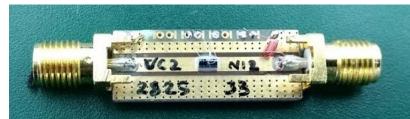


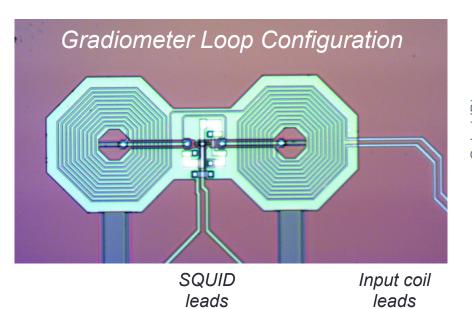

V _{varactor} (V)	F _o (GHz)	Gain (dB)	ΔF/ΔV (MHz/V)
2.56	1.221	19.3	
3.50	1.280	24.0	56.4
5.43	1.368	24.7	41.0
7.51	1.430	24.4	26.9
9.65	1.472	23.2	17.5
11.76	1.501	23.1	12.8

 F_0 adjustable in the range 1.2 – 1.5 GHz $\Delta F = 2.5 - 5.8$ MHz, Gain = 24 dB

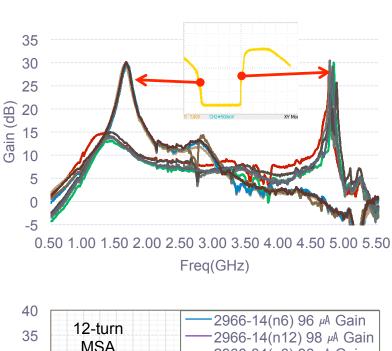


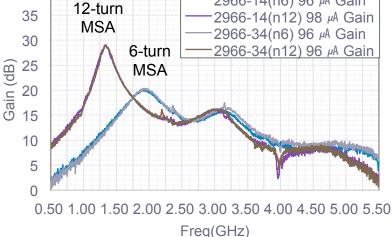



SungWoo YOUN

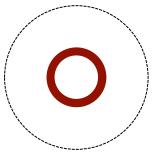

 $\begin{array}{l} \textit{Gain} = 25 \textit{ dB}, \textit{f}_{0} = 1.38 \textit{ GHz} \\ \Delta \textit{f}_{20dB} = 8.3 \textit{ MHz} \\ \Delta \textit{f}_{15dB} = 14 \textit{ MHz} \end{array}$

— Point 1 — Point 2 — Point 3 — Point 4

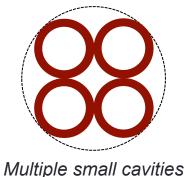

KAIST ISTI ISTI



The gradiometer loop design is considerably less sensitive to ambient magnetic fields that lead to significantly relaxed requirements to shielding.


Such MSAs also have significantly higher immunity to RF interferences and electronics ground-loop problems.

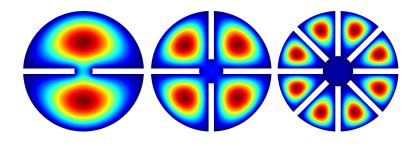
SungWoo YOUN



STITUTE OF SCIE

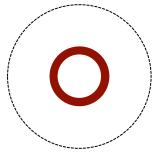
1971

Single large cavity

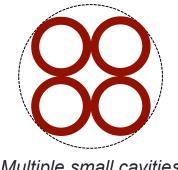

Multiple small cavi

Larger volume

- Higher sensitivity
- 2 times better than multiple-cavity
- Single antenna
 - Easier experimental setup
 - cf) N antennae for N-cavity systems
- Easier phase-matching mechanism
 - Less dead time
 - < 2 s for double-cell cavities</p>

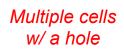

Multiple cells in a single cavity

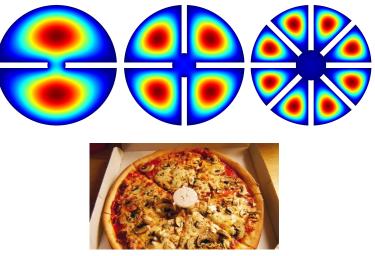
Multiple cells w/ a hole



TITUTE OF SCIE

ΚΔΙΣΤ 1971

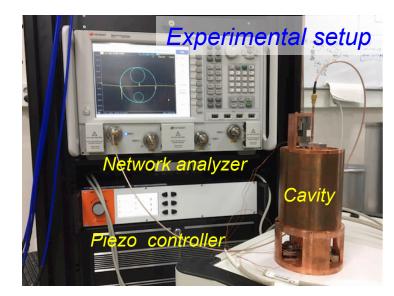

Single large cavity

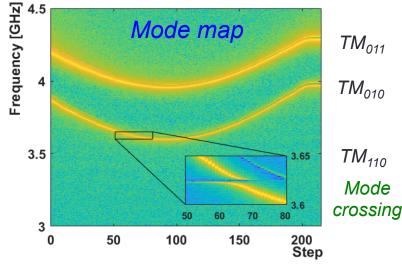

Multiple small cavities

Larger volume

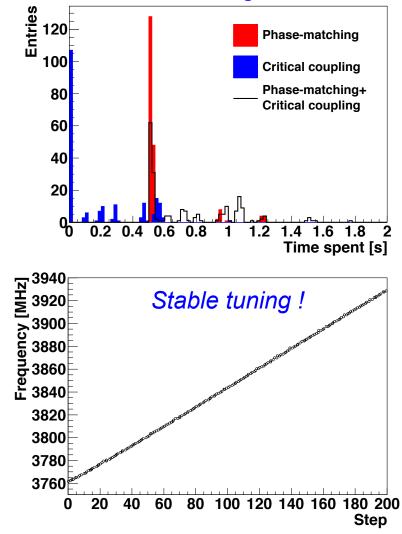
- Higher sensitivity
- 2 times better than multiple-cavity
- Single antenna
 - Easier experimental setup
 - cf) N antennae for N-cavity systems
- Easier phase-matching mechanism
 - Less dead time
 - < 2 s for double-cell cavities</p>

Multiple cells in a single cavity

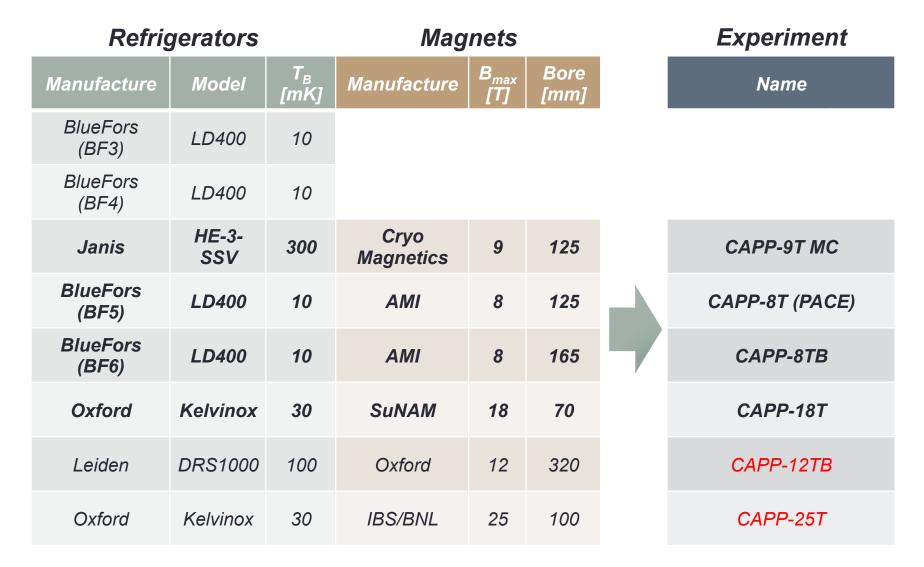




Pizza cavity

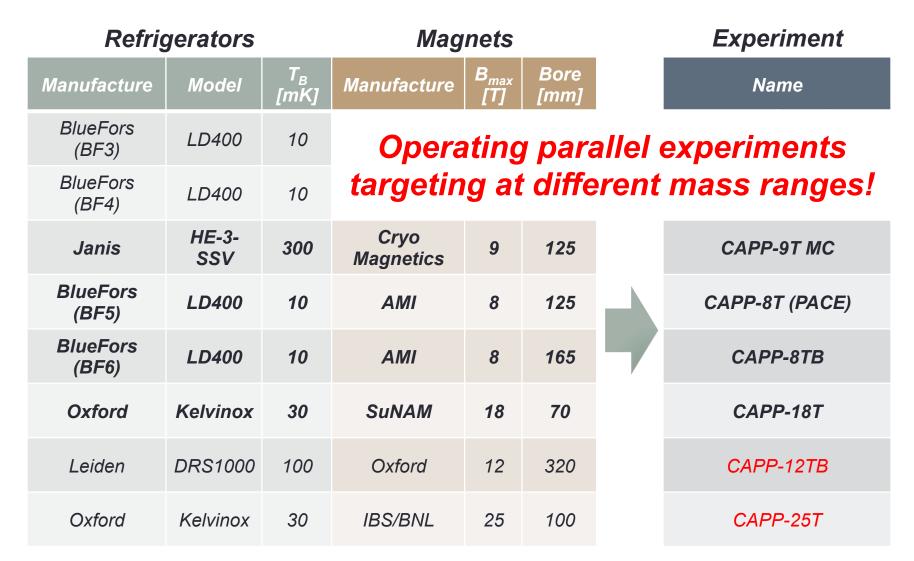


High Frequency Approach

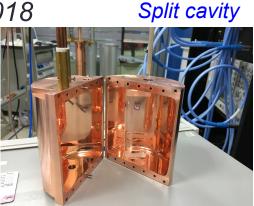

Phys. Lett. B 777 412 (2018)

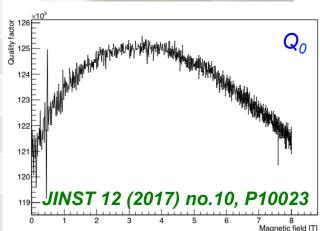
See J. Jeong's presentation

Time for tuning: < 2 sec !



18

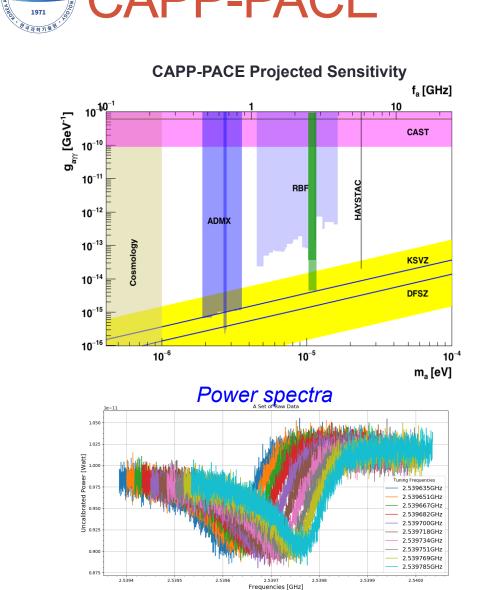




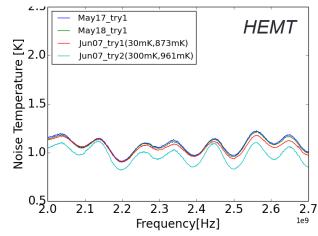
SungWoo YOUN

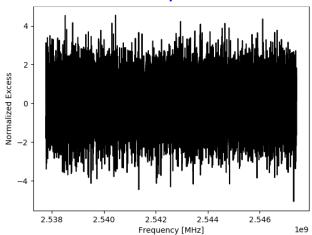
- Pilot Axion Cavity Experiment
 - Preparation for CAPP-25T
 - DAQ mode since Jan. 2018
 - First data by CAPP

Parameter	Value
Δf	2.45 – 2.76 GHz
B _{max}	8 T
T_{phy}	< 50 mK
T _{amp}	1 - 1.5 K
V _{cav}	1.12 litter
Q_0	120,000
C ₀₁₀	0.55


SUBSTITUTE OF SCIENCE R

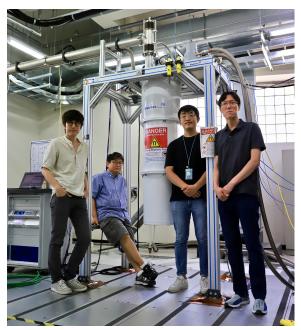
ΚΔΙΣΤ


TECH

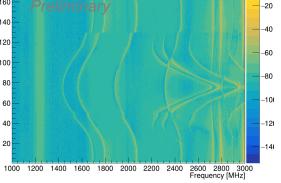


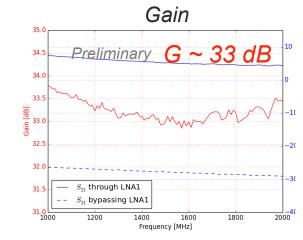
Noise measurement

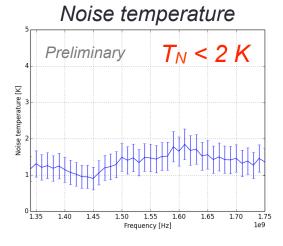
Grand spectrum

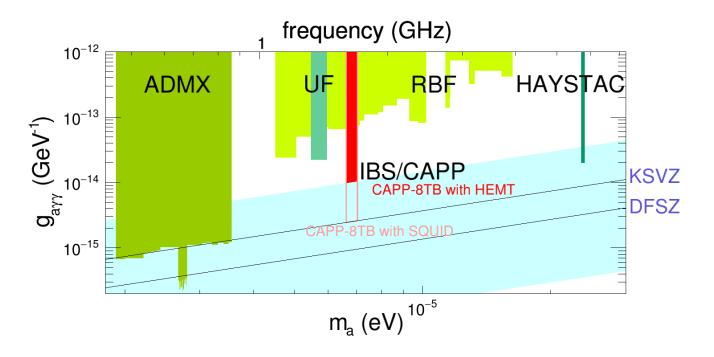


See D. Lee's presentation

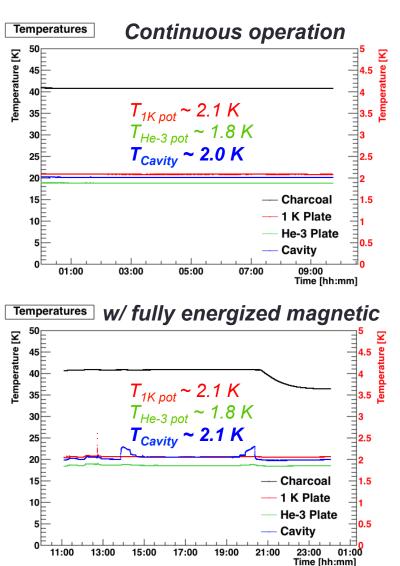



Utilizing a 8 T big bore magnet

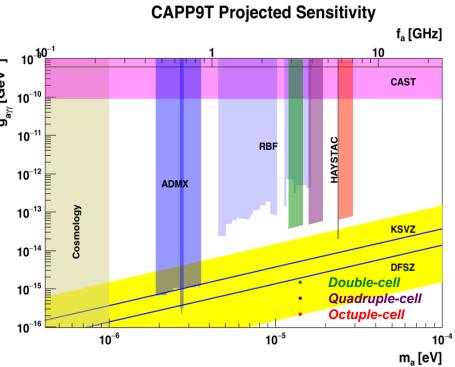

B _{max} (B _{avg})	8 T (7.3 T)
Magnet bore	165 mm
V _{cav}	3.5 L
Q_{o}	> 100,000
T _{phy}	~40 mK
Target search region	1.6~1.7 GHz (6.6 ~7.0 µeV)

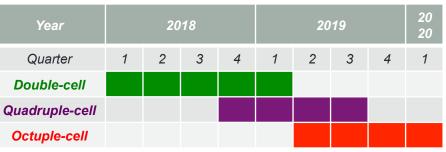


- Two stage experiment
 - 1st stagew/ HEMT-based amplifier (~3 months of operation)
 - Touching QCD axion band
 - 2nd stage: w/ SQUID-based amplifier
 - Reach to KSVZ sensitivity



- Demonstration experiment of multiple-cell cavities
- Janis He-3 system with a 9 T / 125 mm SC magnet
- Continuous operation at 2.1 K with a HEMT

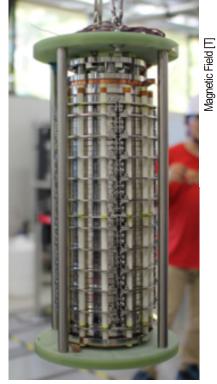



1971 6 1971 6 1971 6

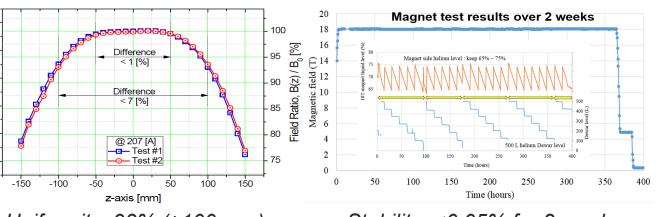
	2-cell	4-cell	8-cell	
Geometry	Θ	\bigoplus	\bigotimes	[GeV ⁻¹]
F ₀₁₀ [GHz]	[2.8,3.3]	[3.8,4.5]	[5.8,7.0]	0
Q_{o}	60,000	51,000	51,000	
<i>C</i> ₀₁₀	0.45	0.45	0.40	
B _{avg} [T]		7.8		
V [L]	2.0	1.9	1.7	
P _{sig} [10 ⁻²¹ W] (β=2)	0.51	0.56	0.68	
T _{sys} [K]	2.1+2.0	2.1+3.0	2.1+4.0	
SNR		5		
DAQ efficiency		0.5		
df/dt [GHz/year] (KSVZ×10)	5.4	4.8	5.0	
Scan time (mon)	1.1	1.8	2.9	

KAIST CAPP-18T

19

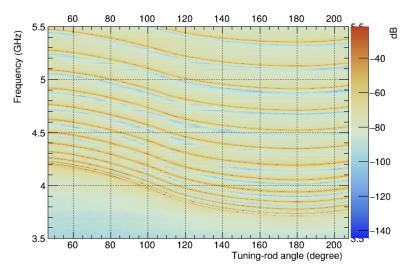

18

17


16

15

14

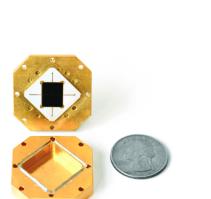

- GdBCo HTS
- Multi-width
- $B_{max} = 18 T$
- *I.D.* = 70 mm
- No-insulation

Uniformity: 93% (±100 mm)

Stability: <0.05% for 2 weeks

Frequency map

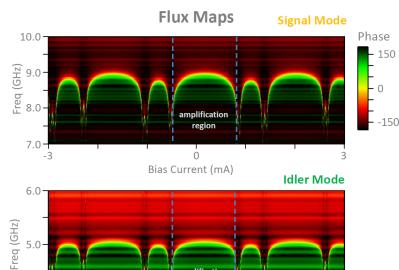
1911 1911 1911 1911


4.0-

-3

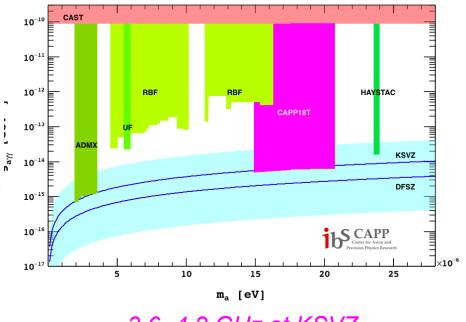
CAPP-18T

SungWoo YOUN



3

7

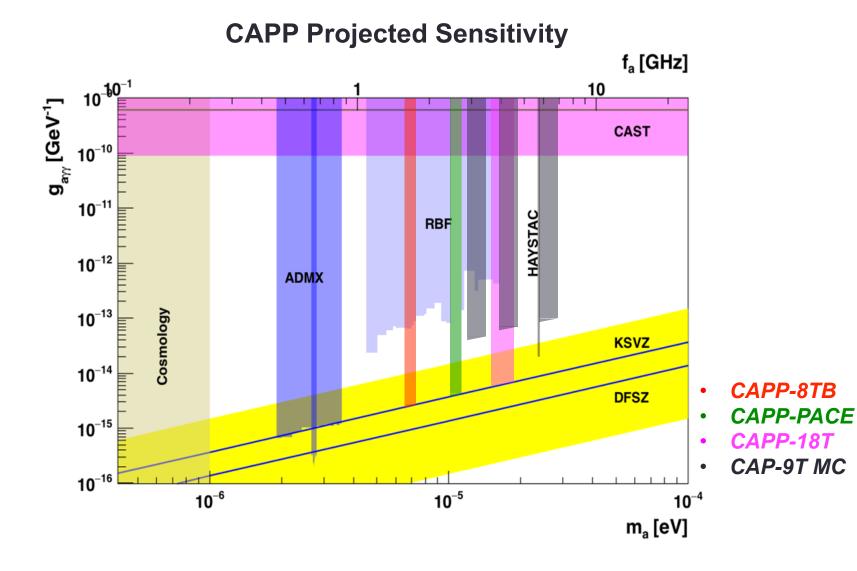

JPC from QCI

amplification region

Ò

CAPP-18T projected sensitivity

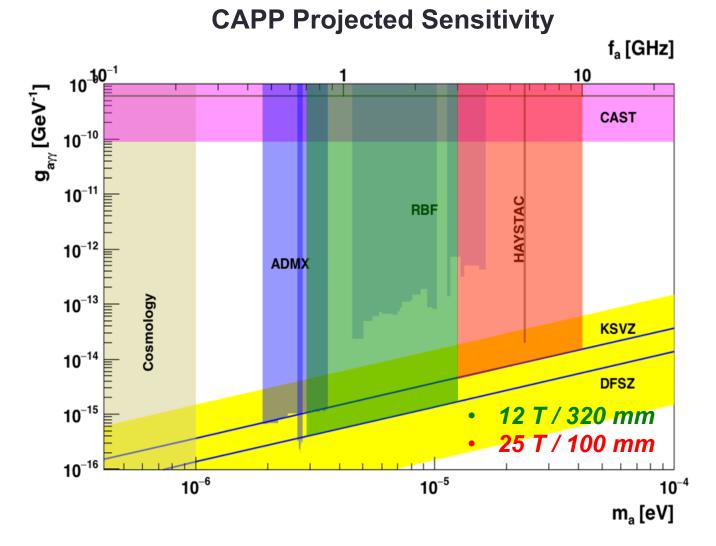
3.6~4.2 GHz at KSVZ


SHSTITUTE OF SCIENC

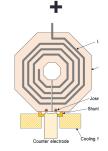
ΚΔΙΣΤ

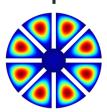
15. 15. 15. 15.

28

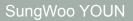

SINSTITUTE OF SCIEN

15 15 15 15


KAIST

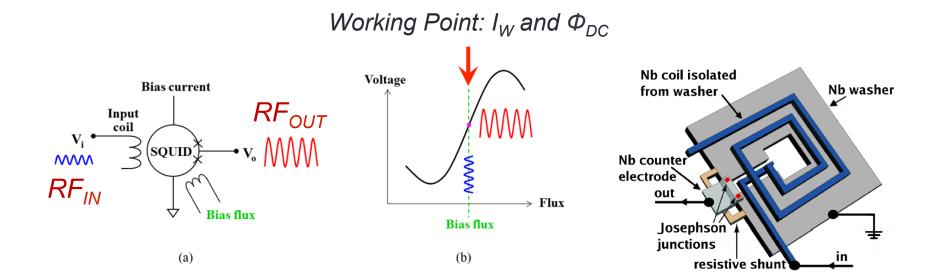


Projected Sensitivity – 5 Year



- Axion research at IBS/CAPP is getting mature
- Major R&D focuses
 - High field / large volume magnets
 - Development of quantum noise limited amplifers
 - Cavity design for higher masses
- Multiple experiments are under preparation in parallel
 - Targeting at different mass ranges
- Probing up to 10 GHz with sensitivity of the QCD axion within next five years

Backup Slides



Microstrip SQUID Amplifier

32

- Superconducting Quantum Interference Device (SQUID)
- RF input signal comes to resonant microstrip input coil
- It modulates input flux in SQUID loop and produces RF output voltage on SQUID leads

Experiment									
	201 8	2019		2020		2021	2022	2023	
PACE									
CAPP-8TB									
CAPP-MC		_	_	\rightarrow					
CAPP-18T									
CAPP-12TB	_	-	-	-	\rightarrow				
CAPP-25T		-		_	\rightarrow				
CAPP-25T									

