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The Invisible Universe

Motivations from the Axion search

Å Ordinary Matter

Astronomical observations indicate that 

baryonic matter accounts for only 4% of 

the mass-energy of the universe.

Å Dark Matter

Orbital kinematics of stars in galaxies, 

galaxies in clusters, and observations of 

gravitational lensing all point towards the 

presence of  about 5 times more mass than 

can be accounted for by stars, gas, and 

other ordinary matter.

Å Dark Energy

The observation that our universe is not 

just expanding, but accelerating indicates 

that the universeôs total mass-energy is 

dominated by the cosmological constant, 

quintessence, or other dark energy.



The Invisible Universe

Motivations from the Axion search

Credit to: xkcd.com(Aug. 20, 2018) ñA webcomicof romance, sarcasm, math, and language.ò



The Invisible Universe

Motivations from the Axion search

Credit to: xkcd.com(Aug. 20,2018) ñA webcomicof romance, sarcasm, math, and language.ò

Å The axionwas originally proposed in 1977 by Pecceiand Quinn (before the idea of dark 

matter) as a solution that ñcleans upò the problem of extremely high symmetry observed in 

the strong force.

Å If axionsexist, they would have been produced in the big bang, and are an excellent dark 

matter candidate because they are cold (non-relativistic) and interact with ordinary light 

and matter very weakly.



The Axion: a Candidate for DM

Motivations from the Axion search

Å The Axion has been observed at UC 

Berkeley, among a disused lab sink deep 

in the second basement of Birgehall!

Å Initial data suggests a non-virialized

velocity distribution and highly non-

homogenous density, so universal 

abundance remains an open question and 

no competing DM candidates have yet 

been excluded. 

Å Even 10 years after the expiration date, 

Axion remains an excellent degreaser.



The Axion Search Space

Motivations from the Axion search

3 orders of magnitude in mass/frequency to search
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Need to scan frequency

Need low noise floor

How to Find an Axion

Motivations from the Axion search
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Primakoff Conversion

Pierre Sikivie (1983)
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Noise Temperature TN

The Axion Dark Matter Candidate

Amplifier Technology T TN

Conventional Si Microwave Amp. 300 K 50 K

CryogenicHEMT Amp. 4.2 K 2 K

MSA 4.2 K to 50 mK TN  å max(T/2, TQ)

StandardQuantum Limit TQ -- hf/kB (48mK @ 1GHz)

MSA HEMT

G1 G2

ὛώίὸὩάὔέὭίὩὝὩάὴὩὶὥὸόὶὩὝ ὝὴὬώίὝ Ὕ Ὕ é

Resonator Si

G3

For a small TS:

Å Need a TN MSA  on par or small relative to TQ and T

Å Need a G1 large or on par with TN HEMT/TN MSA



ÅOriginal system noise temperature: TS = T + TN = 3.2 K

Cavity temperature:           T = 1.5 K (pumped He4)

Amplifier noise temperature:   TN = 1.7 K (HEMT)

ÅTime* to scan the frequency range from f1 = 0.24 to f2 = 0.48 GHz:

t(f1, f2) = 4 x 1017(3.2K/1 K)2(1/f1ï1/f2) sec å 270 years

*Dine-Fischler-Srednicki-Zhitnitsky(DFSZ) theory

The Importance of Noise Temperature

Motivations from the Axion search



ÅOriginal system noise temperature: TS = T + TN = 3.2 K

Cavity temperature:           T = 1.5 K (pumped He4)

Amplifier noise temperature:   TN = 1.7 K (HEMT)

ÅTime* to scan the frequency range from f1 = 0.24 to f2 = 0.48 GHz:

t(f1, f2) = 4 x 1017(3.2K/1 K)2(1/f1ï1/f2) sec å 270 years

*Dine-Fischler-Srednicki-Zhitnitsky(DFSZ) theory

ÅNext generation: 

Cavity temperature: T = 50 mK (He3 dilution unit)

Amplifier noise temperature:   TN = 50 mK (MSA)

ÅTime* to scan the frequency range from f1 = 0.24 to f2 = 0.48 GHz:

t(f1, f2) = 4 x 1017(0.1K/1 K)2(1/f1ï1/f2) sec å 100 days 

The Importance of Noise Temperature

Motivations from the Axion search



ADMX at UW

Motivations from the Axion search
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The MicrostripSQUID Amplifier
IB

20

15

10

5

0

-5

 G
a

in
 (

d
B

)

1000800600400

 Frequency (MHz)

IB

Principle of SQUIDs as microwave amplifiers
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Microstrip SQUID Amplifier (MSA): 

Resistive shunts



Superconductivity

Principle of SQUIDs as microwave amplifiers

Å At low temperatures in a SC metal, ½-spin 

electrons (fermions) bind into 0-spin Cooper 

pairs (bosons).

Å Cooper pairs are the charge-carrying unit in 

superconductors.

Å As cold Bosons, the Cooper pairs almost all 

condense to the ground state (Bose-Einstein 

condensate) resulting in a macroscopically 

coherent quantum state.

Å All the magic is possible due to this large-

scale quantum coherence!

Å Coherence length in ɗcan range from 100ôs 

of nm to several m! (Typical device size is 1 

mm)

(also, current can flow without dissipation)

Flux Quantization

F= nF0 (n = 0, ±1, ±2, ...)

ɮ0 = h/2e å 2.07 10-15 Wb

F = nF0

J

Å ɣmust be continuous, so on trips around a SC 

ring, ɗmay ñadvanceò only in intervals of 2.́

Å Momentum (current) is determined by del ɗ.

Å Total flux is (I x L) constrained to integer 

multiples of h/2e.



Superconductivity

Principle of SQUIDs as microwave amplifiers
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Josephson Tunneling
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Overlap interaction of the wavefunctionsin the 

ñclassically forbiddenò insulator leads to the 

Josephson relations:

Ὅ= Ὅπsin ‏ V=‏  /2ˊ



The RCSJ Model

Principle of SQUIDs as microwave amplifiers
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Josephson relations:

Ὅ= Ὅπsin ‏ V=‏  /2ˊ

A Josephson junction is two conductors separated 

by an insulator, so there is a capacitance. A 

resistance may also exist due to an imperfect 

insulating layer or a resistance added by design.

substituting the 2nd Josephson relation:
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ñphaseò particle on a tilted washboard:



The RCSJ Model

Principle of SQUIDs as microwave amplifiers

Insight from tilted washboard potential:

Å V=0 for any I < I0 (starting flat, at rest)

Å As soon as I > I0 , V > 0 (particle rolls downhill)

Å For small damping terms, V may remain non-zero, 

even if I < I0

Å Critical damping parameter ɼὧ )πὙὅ

determines if VĄ0 for I < I0 regardless of tilt
ñphaseò particle on a tilted washboard:

Ὗ
ɮπ
ς“
Ὅπρ ÃÏÓ‏ Ὅ‏

tilt ăĄ I

position ăĄŭ

velocity ăĄV

mass ăĄC

damping ăĄ1/R

This is why we add parallel resistance



The DC SQUID

Principle of SQUIDs as microwave amplifiers

Two Josephson junctions on a superconducting ring
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The DC SQUID

Principle of SQUIDs as microwave amplifiers

Two Josephson junctions on a superconducting ring

Critical Current I c is modulated by magnetic flux

A flux through the SQUID loop (ūa) induces a circulating 

current to satisfy the flux quanitzationcondition, adding to 

the current through one junction, subtracting from the 

other, and inducing  a difference in the phases across the 

junctions.

Interference of the superconducting wave functions in the 

two SQUID arms sets the maximum current Ic that can 

flow at V = 0

With some simplifying assumptions 

(like symmetric junctions)

the DC SQUID can be treated as a 

single, flux-modulated Josephson 

junction



DC SQUID as Flux-to-Voltage Transducer

Principle of SQUIDs as microwave amplifiers

For use as a flux transducer:

Å Bias flux around ɮπ/4 for max dIc/dɮ
Å Apply a DC bias current slightly above Ic to 

select a high dynamic impedance part of the I-V 

curve

Å Small variations in ɮÙÉÅÌÄÌÁÒÇÅÓ×ÉÎÇÓin V

Normalized I-V plot for ūa =  (0.25± 0.0025) ū0



DC SQUID as Flux-to-Voltage Transducer

Principle of SQUIDs as microwave amplifiers

Integrated flux input coil

SQUID loop
Josephson junctions

Resistive shunts

Practical frequency range å0-200 MHz



DC SQUID as an RF amplifier (MSA)

Principle of SQUIDs as microwave amplifiers

To couple a microwave signal into the SQUID:

Å Cover the washer with an insulating layer 

(350nm of SiO2)

Å Add a spiral path of conductor around the 

central hole

Å Leave on end of the input coil unconnected

This creates a resonant microstrip transmission 

line between the input coil and SQUID washer


