

Reaching the 5-9 µeV Range with ADMX: Multi-Cavity Array

Jihee Yang, Joe Gleason, David Tanner, Neil Sullivan

3rd Workshop on Microwave Cavities and Detectors for Axion Research Livermore, CA, August 22th, 2018

Contents

Introduction

4 cavity array (overview)

Tests Performed (Prototype, RT bench test)

- RF testing
- Cavity tuning

Summary

- Lessons learned
- Issues revealed
- Future Work

Multi-cavity Array Concept

- Why? Higher axion mass range
- Size
 - Ø 42 cm => Ø 16 cm
- Frequency

600~900 MHz => 1.5~2.2 GHz (metal)

4 Cavity Array Testing

Prototype v2

4 Cavity Array Testing

Prototype vI bench test (RT)

4 Cavity Prototype Testing

Al prototype

- Scale : dia (x2.9) smaller, length (x5.5) shorter
- Frequency : I.5 GHz => 4.4 GHz

Main interests

- RF testing
 - □ Mode map : mode-crossing
 - □ Power spectrum : Q factor, cavity f spreads
- Cavity tuning
 - □ Cavity Locking (Synchronizing) method
 - □ Mechanical (Piezo actuator) performance

Tests Performed

Mode Map (mode-crossing) Power Spectrum (Q factor, f spread) Piezo Actuator Test

RF Test Setup

RF Test Setup

Transmission (SI2) or reflection (SII) measurements

Power Spectrum

Mode Map

4 Cavity Mode Map

Mode Map (mode-crossing)

Mode Map (mode-crossing)

- Can we overcome mode-crossing with fine tuning rod?
 - Fine tuning range : 12 mm
- Obtained mode maps with fine tuning with extreme positions
 - I. Min. length : 3 mm
 - 2. Max. length : 15 mm

4 Cavity Array Mode Map (~2 deg, with fine tuning rods)

4 Cavity Array Mode Map (~2 deg, with fine tuning rods)

Mode Map (mode-crossing)

Mode crossing separation change

Capacitance effect between coarse rod and plates?

Mode Map (mode-crossing)

Power Spectrum

TM010 mode resonant peak (cavity D at 10 deg)

Power Spectrum (Q factor, unloaded)

Power Spectrum (Q factor, unloaded)

Power Spectrum (cavity freq spread)

Power Spectrum (cavity freq spread)

 Frequency spread : ave=17.8 MHz max=30.8 MHz

Power Spectrum (cavity freq spread)

Frequency change

Capacitance effect between coarse rod and plates?

Piezo Actuator Testing

Actuators required by 4 C system

Experiment Part		Required Electronics	
Coarse Rod	4	Rotary actuator	1
Fine Rod	4	Linear actuator	4
Antenna	4	Linear actuator	4

- Testing at RT, non-vacuum
 - Suboptimal behavior
 - 5 actuators : sporadic stopping
 - > 2 actuators : getting stuck

Summary & Future Tests

Lessons learned Issues revealed Future tests

Summary : Lessons learned

➢ RF testing

- \checkmark Q factor : 6650
- ✓ Cavity f spreads : Max. 31 MHz
- ✓ Mode map : 3 TE mode-crossings, range of 4.4 6.3 GHz

Cavity tuning

- ✓ Coarse tuning : 26.5 deg, 70 MHz/deg, (Min.) 70 kHz/step
- ✓ Fine tuning : 12 mm range -> 10 MHz

Summary : Issues Revealed

- I. Cavity frequency spread
 - Can exceed fine tuning range (x3)
 - Quality control of cavities, flexure design, lesser gap of coarse rods
- 2. Mode-crossing regions
 - Cannot be covered by fine tune rod offset (x8)
 - Different length cavities
- 3. Piezo actuator performance
 - Some actuators' RT behavior was not satisfactory
 - Collaborate with Attocube Inc., mock up testing

Future Tests

Prototype v2 test (bench test)

- Flexure wheel design
- Lesser gap coarse tuning rods
- Aluminum plated

Future Tests

Prototype v2 test (bench test)

- Flexure wheel design
- Lesser gap coarse tuning rods
- Aluminum plated

LHe (4 K) test

- RF test
- Q improvement
- Mechanical performance

Future Tests

2nd prototype test (bench test)

- Flexure wheel design
- Lesser gap coarse tuning rods
- Aluminum plated

LHe (4 K) test

- RF test
- Q improvement
- Mechanical performance

▶ B = 7.5 T test

Acknowledgments :

This work was supported by the U.S. Department of Energy through Grants No. DE-SC0009723, No. DE-SC0010296, No. DE-SC0010280, No. DE-SC0010280, No. DEFG02-97ER41029, No. DE-FG02-96ER40956, No. DEAC52-07NA27344, and No. DE-C03-76SF00098. Fermilab is a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. Additional support was provided by the Heising-Simons Foundation and by the Lawrence Livermore National Laboratory and Pacific Northwest National Laboratory LDRD offices.

Why Multi-Cavity Array

□ Higher frequency

$$f = \frac{c}{2.61r}$$

Axion Mass	4.Ι μeV	8.3 µeV
Frequency (f)	I GHz	2 GHz
Cavity Radius (r)	11.5 cm	5.75 cm

ADMX Site Insert

Requirements for Design

Frequency Tuning

Tuning rod

ADMX Single Cavity

Multi-cavity Array Concept

- Why? Higher axion mass range
- Size
 - Ø 42 cm => Ø 16 cm
- Frequency
 - 600~900 MHz => 1.4~2.1 GHz (metal)
- Prototype first

4 Cavity Prototype Pictures

ADMX Working Space

UF Prototype

Unit: (cm)

Working Space

Working Space

Wheel Concept Modification

Old wheel concept

New wheel concept

Tuning Range (ADMX 4C)

- ▶ *r* = 7.94 cm
- f_{010} (cyl) = 1.45 GHz
 - Metal Rod:Tune to 2.2 GHz (Dia= 2.88 cm)
 - ▶ Dielectric (Al₂O₃) Rod:Tune to I GHz

Build ADMX 4 Cavity Array

4 Cavity Prototype Design

Prototype Array

- Finish Assembly
- Testing
 - > Rm.Temp. bench test
 - > 4 K test
 - Locking test

Tuning Rod Range

Power Spectrum Near 2 deg Crossing

Power Spectrum (~14 deg)

Mode Crossing (~22 deg)

Mode Map (mode-crossing)

4 Cavity Array Mode Map (near mode crossing region: 14 degree)

Mode Map

53

Mode Map

54

Power Spectrum (cross-talk)

- More cross-talk with lower power
- Problem with low temp case?

Power Spectrum (Q factor)

Fine rod positions

- 1. No fine rods : Al block flushing with top plate
- 2. Min. length : 3 mm
- 3. Max. length : 15 mm

Power Spectrum (Q factor)

Gap Change Measurement

Original

Coarse Rod Adjusted:

(wheel index swapped):

Cavity	Coarse Rod Vertical Position	Cavity	Coarse Rod Vertical Position	Gaps btw Rod & End Plate
А	~Center	А	~Center (no change)	Top gap ~ btm gap
В	~Center	В	~closer to bottom plate	Top gap > btm gap
С	~Center	С	~closer to bottom plate	Top gap > btm gap
D	~Center	D	~Center (no change)	Top gap ~ btm gap

Note: Adjusting the coarse rod (vertical) position was done by observing (TM010) frequency response (S12). At the center position, frequency seemed to be highest. When rod gets closer to end plates, frequency got lower. Rods in cavity **B** and **C** were lowered to a position closer to the bottom plate.

Near wheel plate angle of 17 deg, cavity B frequency was lowered ~9 MHz, cavity C frequency was lowered ~5 MHz. (see plot on page 4)

A **phase modulated** RF signal (modulation frequency: 2.5 MHz) is fed to the cavity and the **reflected signal** is detected and used to synchronize multi cavity resonant frequencies.

A **phase modulated** RF signal (modulation frequency: 2.5 MHz) is fed to the cavity and the **reflected signal** is detected and used to synchronize multi cavity resonant frequencies.

Typical locking error signal

- Cavity A, B, D are locked consecutively
- Tested throughout tuning range (0~27 deg)
- □ Result :

Accuracy	6.44 % of linewidth
Total Time (x4)	8.4 s
Est. dissipated power	I.67 mW

Results (Heat)

$$E_{dissipated} = CV^2 tan(\delta)$$

Edissipated : Energy dissipated C : Motor capacitance V : Motor drive voltage tan(δ) : Loss tangent

	Unavoidable	Avoidable	Total
Steps	321	140	462
Heating (mJ)	45.3	4.8	50.I
Power (uW) (per cycle : ~ 120 sec)	377	40	417

Mode Map Test Setup

Electronics :

- Network analyzer (Keysight E5063A), motor controller (Attocube ANC350), rotary motor actuator (Attocube ANR240/RES)
- Stimulus (input) Power :
 - Output of NA : 0 dBm
- All others kept same with previous setup :
 - configuration and coupling of antennas, coarse tuning path, step size etc.

Piezo Actuator Testing

Specifications

- Rotary actuator
 - Max. load : 2 N
 - Max. dynamic torque around axis : 2 Ncm
- Linear actuator
 - Max. load : 2 N
 - Max dynamic force along the axis : 5 N

Tests

- Antenna (RG402, dia = .140'')
 - Weight : 0.06 N
 - Friction : 5.88 N
- Fine tuning rod (dia = .125")
 - Weight : 0.01 N
 - Friction : 1.08 N

What's Next?

• Antenna coupling with Pound lock

Simulated plot

Observed plot

- Electroplated cavity (pure Al)
- Low temperature test (@ 4 K)
- B field test (~7.5 T)