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Why Frequency Metrology?

Frequency and time can be controlled
with a nearly 10-18 accuracy,
meaning that such a clock created at
the time of the big bang would be
today accurate within | second.
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Why Frequency Metrology?

Frequency and time can be controlled
with a nearly 10-18 accuracy,
meaning that such a clock created at
the time of the big bang would be
today accurate within | second.

1 In the same time, accuracy of Josephson
Junction voltage standards achieve only
10-3 uncertainty level
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Frequency Metrology for Fundamental
Physics (UWA)

High Sensitivity Gravitational Wave Antenna with Parametric

Transducer Readout
Phys. Rev. Lett. 74, 1908 — Published 13 March 1995
A high- @ niobium resonant mass gravitational radiation antenna with a superconducting parametric

transducer and noncontacting readout is shown to achieve a noise temperature of about 2 mK using a
zero order predictor filter.

Direct terrestrial test of Lorentz symmetry w
in electrodynamics to 10 — 18

Here we use ultrastable oscillator frequency sources
to perform a modern Michelson-Morley experiment and make the most precise direct
terrestrial test to date of Lorentz symmetry for the photon, constraining Lorentz violating
orientation-dependent relative frequency changes Av/v to 9.2+10.7x10~ 1 (95%
confidence interval). This order of magnitude improvement over previous Michelson-Morley
experiments allows us to set comprehensive simultaneous bounds on nine boost and rotation
anisotropies of the speed of light, finding no significant violations of Lorentz symmetry.

Acoustic Tests of Lorentz Symmetry Using Quartz Oscillators
Phys. Rev. X 6, 011018 — Published 24 February 2016

realization of such a “phonon-sector” test of Lorentz symmetry using room-temperature stress-
compensated-cut crystals yields 120 h of data at a frequency resolution of 2.4 x 10~ * and a limit of

~n

Co= (—1.8 +2.2) x 10~ GeV on the most weakly constrained neutron-sector c coefficient of the
standard model extension. Future experiments with cryogenic oscillators promise significant
improvements in accuracy, opening up the potential for improved limits on Lorentz violation in the

neutron, proton, electron, and photon sector.
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New alternative to Light Shining through a Wall

Many beyond the standard model theories introduce light paraphotons, a hypothetical spin-1 field
that kinetically mixes with photons. Microwave cavity experiments have traditionally searched for
paraphotons via transmission of power from an actively driven cavity to a passive receiver cavity, with
the two cavities separated by a barrier that is impenetrable to photons. We extend this measurement
technique to account for two-way coupling between the cavities and show that the presence of a
paraphoton field can alter the resonant frequencies of the coupled cavity pair. We propose an

Frequency Metrology in Paraphoton Detection

Hidden sector photon coupling of resonant cavities
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experiment that exploits this effect and uses measurements of a cavity’s resonant frequency to
constrain the paraphoton-photon mixing parameter y. We show that such an experiment can improve
the sensitivity to y over existing experiments for paraphoton masses less than the resonant frequency of
the cavity, and that it can eliminate some of the most common systematics for resonant cavity

experiments.

Paraphoton coupling to the 2nd cavity modulate resonance frequency
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System for Axion Detection
photonic cavity with two
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Axion Mediated Mode-Mode Interaction

based on axion Electrodynamics we derive axion induced coupling between two cavity modes
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Axion Mediated Mode-Mode Interaction

based on axion Electrodynamics we derive axion induced coupling between two cavity modes

Hi,i = thgegt [f_(clcg — c{cz) + §+(cic£ — 0102)]

Dimensionless Orthogonality Form Factors Effective Coupling
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Rotating VWave Approximation

Axion UpConversion
allows optical search at W, = W — W1

microwaves and mme- _ . ;
Wave Hy = ihgegé_(a*cicy — acyca)

beam splitter
I , h Axion DownConversion
allows microwave searc .

at mm-wave Wq = W2 - Wi

Hp = ihgegéq (aclel — a*eicy)

parametric amplification
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Axion Mediated Mode-Mode Interaction

_ * T _ *
Hy = ithgegé_(a™cicy — acqcs) Hp = thgegé + (acicg —a”“cico)
beam splitter parametric amplification

Experimental Approaches
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Axion Mediated Mode-Mode Interaction
Hy = ihgegé_(a*cich — acles) Hp = ihgents (acich — a*cica)
beam splitter parametric amplification
Experimental Approaches

Power Detection
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Axion Mediated Mode-Mode Interaction
Hy = ihgegé_(a*cich — acles) Hp = ihgents (acich — a*cica)
beam splitter parametric amplification
Experimental Approaches

Power Detection Cross Correlation
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Axion Mediated Mode-Mode Interaction

_ * T _ *
Hy = ithgegé_(a™cicy — acqcs) Hp = thgegé + (acicg —a”“cico)
beam splitter parametric amplification

Experimental Approaches

Power Detection Cross Correlation
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Axion Mediated Mode-Mode Interaction

. | steady-state
Perturbation Analysis amplitude

Decompose the solution into large
steady state and small fluctuating parts

Solve for Steady State components

neglecting fluctuating components

d .

Linearise the EoM for small fluctuating [ErE etk SR

parts around steady state solutions

Solve linear EoMs In the frequency
domain

arXiv: 1 806.0/ 14|
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Power Detection and Cross Correlation

axion phase technlcal noise

steady-state
amplitude l /
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Axion Induced Frequency Shifts

Axion UpConversion Axion DownConversion
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From Frequency To Phase Fluctuations

quite often direct frequency measurements are not practical

phase fluctuations

fractional frequency
fluctuations

Allan Variance

___AllanVariance
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From Frequency To Phase Fluctuations

quite often direct frequency measurements are not practical

r. w. freq.

A i Also we want RF
—4f measurements rather

, b oo f3 than DC frequency shifts

b f — 1 flicker phase.
—1 bO white phase

| e
£2 Search in the Fourier
X % Spectrum

fractional frequency
fluctuations

7 flicker freq. . flicker phase .,':
! SRR b ¥
) J wh1te| freq. i p £
.\.__ I ! ‘_l '_/"
e I i . :
NS FOuricr frequency b s Offset from carrier
\ ; et
\ ’__7,',' =TI
Pl ) M
Fy /7

/
, [req.

Allan Variance 2 \
y (T) 5 A drift

flicker phase
white phase

white freq.

-
ficke g, T T EQUS
arXiv:1806.07 4]




Axion Induced Phase Fluctuations

E\ FoMs in the Rotating Frame (complex amplrtudes)
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Axion quadratures:

1 = —nx1 — 2Q(7) + y1 cos(f1 —

)

), Qc(T) = gei€ | Al cos(ba(T) + 2 — ¢1),
) Qs(7) = ger— | Al sin(0a(7) + 2 — ¢1),
)

phase sensitivity

pils| =+ ‘ a2 Qcls

i 52+2%5+A + 42 T

Laplace

: steady-state i ‘ EQUS
arXiv:1806.07 14| amplitudes cavity low pass




Axion Induced Phase Fluctuations
fa=fexth+1/f

Cavity phase noise measurements >teady-state fi>f
amplitudes
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Axion Induced Phase Fluctuations

Dual Loop Osclllator phase noise

measurements
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BroadBand Search
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Experiment

Dual Loop Osclillator

R=22mm, H = [8.5-83.6 mm
cylindrical copper cavity

TMo22 mode (9GHz)
TMor mode (6.5-9GHz)
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Advantages of Frequency Metrology

- Magnet-free
- SQUID-free
- Superconductor-free
-Semiconductor amplifiers
- Volume independent
- P</00 uWV signals
- Liquid-Helium only (>4K)
- Only cavity/amplifier at 4K
-High/Low frequency ranges
- Optical implementation possible
- Broadband search Is possible
- Axion phase sensitive
- KSVZ/DSFZ achievable
- labletop search worth doing
-Room for improvement!
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One more thing...
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Can we do better?

EQUS



One more thing...

|~ \/gcw*y‘g

EQUS



One more thing...

|~ '\3/ gavve

EQUS



Probing Dark Universe with Exceptional Points

Diabolic Points
(DP)

Coalescent eigenvalues

A ~ g

EQUS



Probing Dark Universe with Exceptional Points

Degeneracies

Diabolic Points Exceptional Points
(DP)

Coalescent eigenvalues Coalescent eigenvalues
Coalescent eigenstates

perturbation

splitting to one of

the modes
A~ ¢

Enhancing the Sensitivity of Frequency and Energy Splitting
Detection by Using Exceptional Points: Application to Microcavity
Sensors for Single-Particle Detection

Jan Wiersig
Phys. Rev. Lett. 112, 203901 — Published 20 May 2014

Several types of sensors used in physics are based on the detection of splittings of resonant
frequencies or energy levels. We propose here to operate such sensors at so-called exceptional

points, which are degeneracies in open wave and quantum systems where at least two resonant

frequencies or energy levels and the corresponding eigenstates coalesce. We argue that this has great

normalized intensity

potential for enhanced sensitivity provided that one is able to measure both the frequency splitting as

well as the linewidth splitting. We apply this concept to a microcavity sensor for single-particle
detection. An analytical theory and numerical simulations prove a more than threefold enhanced
sensitivity. We discuss the possibility to resolve individual linewidths using active optical microcavities.
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Probing Dark Universe with Exceptional Points

Degeneracies

Diabolic Points

Gain or
Loss

Loss
Probing Dark Universe with Exceptional Points

Maxim Goryachev,! Ben McAllister,! Jason Twamley,? and Michael E. Tobar!:®)

YARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Western Australia,
35 Stirling Highway, Crawley WA 6009, Australia

D ARC Centre of Excellence for Engineered Quantum Systems, Macquarie University, Sydney,

Australia

(Dated: 16 August 2018)

It is demonstrated that detection of putative particles such as paraphotons and axions constituting the dark
sector of the universe can be reduced to detection of extremely weak links or couplings between cavities
and modes. This method allows utilisation of extremely sensitive frequency metrology methods that are
not limited by traditional requirements on ultra low temperatures, strong magnetic fields and sophisticated
superconducting technology. We show that exceptional points in the eigenmode structure of coupled modes
may be used to boost the sensitivity of dark matter mediated weak links. We find observables that are
proportional to fractional powers of fundamental coupling constants. Particularly, in case of axion detection,
it is demonstrated that resonance frequency scaling with ~ | /g,~, and ~ /g, dependencies can be realised

in a ternary photonic cavity system, which is beneficial as these coupling constants are extremely small. '




Probing Dark Universe with Exceptional Pomts

System Hamiltonian
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Probing Dark Umverse with Exceptional Pomts
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Higher Order Exceptional Points

Neutral

System Hamiltonian
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Is this experimentally feasible?

Enhanced sensitivity at higher-order exceptional
points

Hossein Hodaei!, Absar U. Hassan!, Steffen Wittek!, Hipolito Garcia-Gracia', Ramy El-Ganainy?,
Demetrios N. Christodoulides' & Mercedeh Khajavikhan'
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Advantages of Frequency Metrology

- Magnet-free
- SQUID-free
-Semiconductor amplifiers
- Volume independent
- Low Power signals
- Superconductor-free
- Liquid-Helium only (>4K)
- Only cavity/amplifier at 4K
-High/Low frequency ranges
- Optical implementation possible
- Broadband search Is possible
- Axion phase sensitive
- KSVZ/DSEZ achievable
- labletop search worth doing
- Could be fractional in axion coupling
-Room for improvement!
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