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Background

§ A new LLNL SI is focused on developing Gaussian process inference 
techniques for Bayesian searches

- Part of this project involves investigating the idea of using an 
array of quantum oscillators (viz microwave cavities) as an 
analog computer for implementing Bayesian data analysis

§ Practical motivations:

1) Analyzing sparse/ambiguous data problems 
2) Detection of signals below the threshold for single quantum 

excitation
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Bayesian Pattern Recognition

§ Best classification procedure is to choose class  such 
that posterior probability               for an explanation           

is largest, where

€ 

α

€ 

P(α | x) =
p(α)p(x |α)
p(β)p(x |β)

β

∑
€ 

P(α | x)
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“Physics” Interpretation 
for Bayesian Data Analysis

“Energy cost” for explanation a :

Bayes’ formula for the posteriori probabilities for various explanations

Which minimizes the information theory “free energy”

€ 

F(x) = [Eαα
∑ P(α) − (−P(α)logP(α))]

€ 

Eα ≡ −log[p(α)p(α | x)]

Often referred to as the minimum description length  

P(α | x) = e−Eα

e−Eα
α
∑
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Bayesian networks

In Bayesian networks the world model for input data is
represented by conditional probabilities for the
activations of the nodes in a layered network given a
set of inputs to the first layer:

The conditional probabilities p({wj}|α} represent
“connection strengths” between nodes

Unfortunately the usefulness of Bayesian networks is limited 
because summing over model parameters requires Monte 

Carlo sampling which can be impractical 

P(d |α) = p(d | {wj},α)p(
{wj }
∑ {wj} |α)
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Gaussian Process (GP) Neural Networks
(Google Brain 2017)

What underlies classical neural networks is the Arnold-
Kolmogorov theorem: any function of N-variables can be
constructed from compositions of a nonlinear function of one
variable. When the errors in the model - data residuals are
Gaussian, this construction can be carried out analytically; in
particular the covariance of the output GP is obtained by
inverting a nonlinear transform of the data covariance matrix.

Minimizing the quadratic form that describes the mean errors in the
GPNN predictions corresponds to minimizing the ”free energy”.

Remarkably this is related to inverse scattering theory for
multi-channel quantum mechanics (Dyson 1975).



LLNL-PRES-xxxxxx
7

Quantum oscillator dynamics 
in the presence of a noisy signal 

§ The propagator for the density matrix for a quantum oscillator driven 
by a classical noise signal f(t) is 

where

is the generating function for signal correlations

• For Gaussian noise 

where A is the autocorrelation function for the signal f(t)
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Where is the the non-linearity required for a 
quantum universal calculator?

§ Pattern recognition using neural networks always requires a 
nonlinearity in order to map input data to a arbitrary 
functions in feature space.

§ The quantum dynamics of density matrices is non-linear if 
one allows coupling to a bath (eg TLs) where TL wave 
functions are reset at specified intervals to the ground state: 

ρ(x, y, x0, y0, t) = exp im
2
x2 −ω0
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Quantum Oscillator Boltzmann Machine

If the oscillators in a layered 
array of quantum oscillators are 
coupled to each other, and also 
a bath that is periodically reset, 
the density matrix of the array 

will relax in such a way to 
minimize the “free energy”;
i.e. the quadratic form that 

describes the differences in the 
predicted and observed 

excitations of the black nodes. 
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Visualization of an optimum Bayesian search  

§ The information theoretic free energy optimization of a Bayesian
search using a harmonic oscillator array coupled to reset noise can be
visualized as minimization of the area swept out by a string; which is
reminiscent of the solution of the traveling salesman problem.

d(I,μ) = |ξμ – wμ|2
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How all this can be simulated – not to mention 
hardware realization – is a work in progress

§ Expanding the end point of the exact path integral density matrix 
propagator from t to t + ε yields a non-Markovian master equation:
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Summary

§ Entangled coherent sates for an array of multi-
dimensional quantum oscillators can be used to to 
encode the statistical properties of input signals and 
organize input data so as provide the “minimum 
information free energy” explanation for the data.

Longer term it appears that large arrays of quantum oscillators 
could be used to detect weak signals with low signal to noise 

and below the threshold for singe quantum detection
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Classical Bayesian Searches

§ Classical Bayesian searches: a sequence of choices  
“locations” xn to be searched and observations Yn

where Un = Δxn defines the search strategy.

§ Finding the optimal search strategy for many problems of 
practical interest is a “work in progress”

- When the sources of noise and measurement errors 
are Gaussian, then the strategy can be obtained by solving a 

nonlinear matrix equation; which also solves the inverse  
scattering problem in quantum mechanics ( Dyson 1975)


