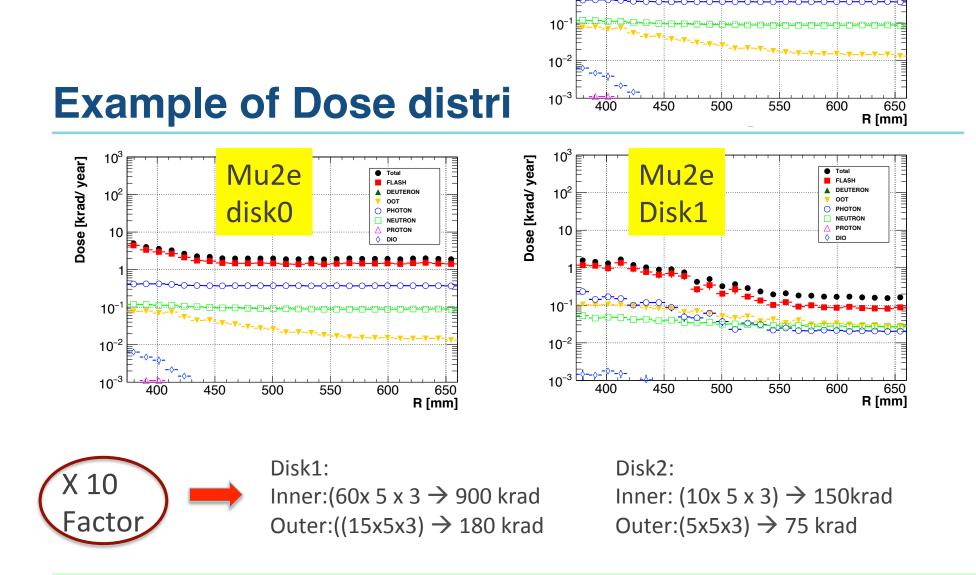


Mu2e-II calo general requirements

S.Miscetti Mu2e calorimeter L2 manager LNF INFN, Italy

Mu2e-II workshop @ NorthWestern University 29 August 2018

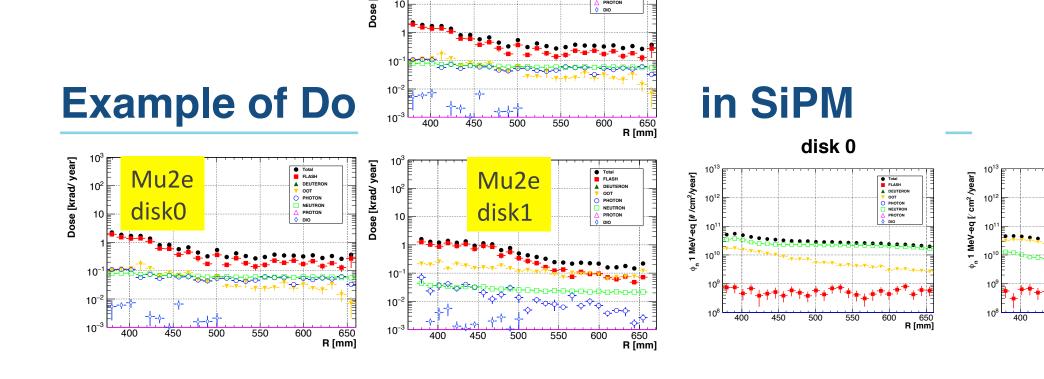

Calorimeter requirements and generic

- We aim to same energy (< 10%) and time (< 500 ps) resolutions as in Mu2e.
- Aiming to provide standalone trigger, track seeding and PID as before.
- Work in vacuum @ 10⁻⁴ Torr, keep a low level of outgassing.
- To be resistant to the strong radiation environment and cope with intensity \rightarrow (x 10 dose, x 3 occupancy/microbunch) :
- → I still believe that in the outermost region and in the second disk a revised CsI+fast SiPMs can still be used \rightarrow no hope for this in the innermost regions
- → For each technical choice/combination of crystals, sensors, electronics … we have still to take into consideration the effort on the calorimeter infrastructure: as for instance .. Cooling and electronics

5 Fermilab

29 August 2018

 \rightarrow It will be great if we could save most of the mechanical structure




→ With respect to dose, disk 2 could be almost left as it is with CsI + SiPM readout Speeding up the amplification stage.

 \rightarrow The innermost area of first disk will need a drastic change

29 August 2018

7 Fermilab

Disk1: Inner: (10x2x 5 x 3) \rightarrow 300 krad Outer: (10x0.5x5x3) \rightarrow 75 krad Disk2: Inner: $(10x1x 5 x 3) \rightarrow 150$ krad Outer = $(10x0.5x5x3) \rightarrow 75$ krad

29 August 2018

Latest SiPM Dose test indicated no hints of deterioration up to 80 krad

 X 10
 Disk 1 = 10 x 6 x 10^{10} x 5 x 3 = 900 x 10^{10} = 9 x 10^{12}

 Factor
 Neutron fluence up to 10^{13} n_1MeV/cm²

 -40 C

Comparison between crystals

Specs/Crystal	Pbw0 ₄	PbF ₂	BaF ₂	Csl	LYSO
Light Yield (pe/MeV)	10	2	100 (400)	100	2000
Wavelength (nm)	420	UV-Blue	220 (350)	315	420
Emission time (ns)	10	prompt	0.9 (600)	30	40
Rad-hardness LY loss @ 1 Mrad	80%	Not well known	50%	80%	50%
Density (g/cm ³)	7.0	7.0	4.6	4.6	7.0
Radiation Length (cm)	0.9	0.9	1.8	2.0	0.9

- BaF₂ is the best crystals for the hottest places.
- It matches all requirements apart the existence of a slow component.
- It has also the same density of CsI \rightarrow good for mechanical replacement!!

Fermilab

R&D considerations ... and infrastructures ..

List of R&D tests for whatever proposed solution

- \rightarrow Measure resistance to doses
- \rightarrow Measure resistance to neutrons up to 10^{13} n_1MeV/cm²
- \rightarrow Control behavior at low temperatures
- \rightarrow Measure resistance for large integrated charge

List of engineering details:

- Qualify MTTF
- Work on improving Cooling system and cooling distribution
- Improve/change the electronics:

(1) FEE \rightarrow Move to ASIC?

- (2) FEE \rightarrow Move it to Mezzanine boards
- (3) DIRAC \rightarrow new proposals ...of picoTDC

6 S.Miscetti @ MU2E-2: calo-reqs

29 August 2018

SiPMs @ Mu2e-II: Radiation Induced Current

□ In Mu2e, there is a current drawn by the sensors that is due to the direct illumination by low gamma irradiation or by induced phosphorescence.

G For CsI and BaF₂ this has been measured during Mu2e R&D path

- \rightarrow The highest RIC source is the dose, a smaller contribution from neutrons.
- \rightarrow In Mu2e, we expect to have a RIC of 200-300 uA dominated by beam-flash dose.
- → In Mu2e-II, this situation could be reversed, neutron fluence coming from capture on the target could be the highest source.
- □ This RIC is independent from the photosensor cooling and depends only on the crystal "induced" light
- \rightarrow In Mu2e-II, the average current induced by neutrons could reach 2 mA/channel

SiPMs @ Mu2e-II: Radiation Induced Noise

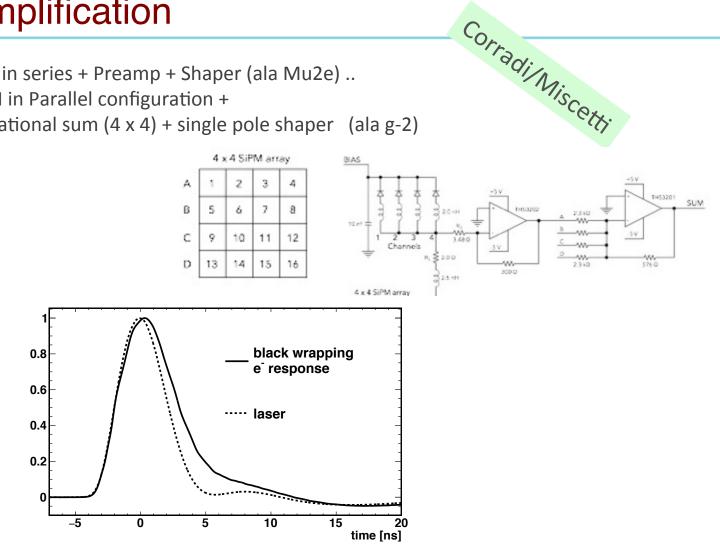
□ From the RIC we estimate the radiation induced noise (RIN) in MeV looking at the fluctuation of the photoelectrons in a given gate.

□ In Mu2e we evaluated the RIN (with SiPM) in a 200 ns gate

- → We estimate around 300-500 keV / channel
 → The noise factor is proportional to SQRT(Npe-rin) i.e. to SQRT(RIC)
 → In Mu2e-II, we expect a factor SQRT(10) = 3 of increase in RIC
- \rightarrow This means a factor of 3 on RIN \rightarrow **1-1.5 MeV noise per channel.**

□ Fortunately the technical requirement of requiring for Mu2e-II narrow signals helps to reduce the noise contribution:

- \rightarrow In MU2E we evaluate the noise in 200 ns.
- \rightarrow In MU2E-II we can do that in 20-30 ns
- \rightarrow The noise scales down with SQRT(DT-Gate) \rightarrow it will be reduced to 1/3


5 Fermilab

29 August 2018

The RIN noise in Mu2e-II will be comparable to Mu2e

SiPM preamplification

- 4 6x6 mm² SiPM in series + Preamp + Shaper (ala Mu2e) ...
- 16 3x3 mm² SiPM in Parallel configuration + 2 stages of operational sum (4 x 4) + single pole shaper (ala g-2)

For Mu2e-II \rightarrow BaF₂ + SiPMs matched with the g-2-like solution is favored

7 Fermilab

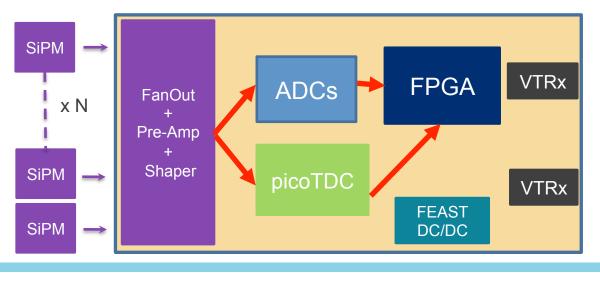
Possible digitization scheme (1)

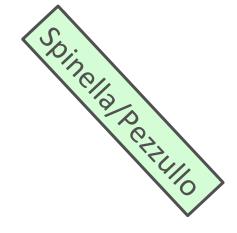
- In Mu2e we are digitizing signals with Waveform sampling at 200 Msps
 This is working nicely in Mu2e but has to be abandoned for Mu2e-II
- The sampling will be too slow for pileup separation and timing resolution for the "much narrower" envisaged signals of 20 ns → at least 1 Gsps needed!
- Increasing the sampling will drastically increase power consumption
- X 10 radiation hard

Possible scheme solution: fan-out signals at MB level

 \rightarrow First copy discriminated and digitized with multi-hits TDC (picoTDC of CERN)

https://indico.cern.ch/event/548960/contributions/2225641/attachments/1303647/1947295/DT_elec_up_DR.pdf


- \rightarrow Second copy readout with a lower rate FADC
- → Find RadHard components POLARFIRE FPGA and DCDC converters (FEAST of CERN)


http://project-dcdc.web.cern.ch/project-dcdc/public/Documents/FEAST%20datasheet.pdf

Spinella Petrullo

Possible digitization scheme (2)

- Instead of sampling the waveform we want to use TDCs for:
 - Precise time reconstruction
 - Charge evaluation using time over threshold
- Rad hard ADC @ 50-100 MHz for charge reconstruction? (simulation needed)
- The PolarFire FPGA should be sufficiently rad hard
- VTRx optical transceivers
- The board could also include the PreAmp + shaper section (thanks to the SiPM or MCP-LAPPD high gain)
 - TID reduction & neutron flux by a factor of ~ 10
 - simplified cooling system

