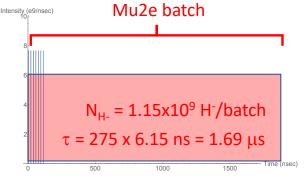
Laser Notcher for PIP2IT and Mu2eII

Monica Tecchio, Myron Campbell, Yongyi Wu

University of Michigan


Mu2e II Workshop at Northwestern University Aug. 29, 2018

PIP2IT and Mu2e-II Beam parameters

(based on Paul Derwent's talk at last Mu2le Collaboration Meeting of Mar. 2, 2018)

- PIP-II can generate pulsed 800 MeV H⁻ beam for Mu2e-II, with extinction requirement of 10⁻¹¹
- PIP-II Injector Test (PIP2IT) generates 25 MeV H- beam after Warm Front End (where bunch-bybunch selection at 2MeV happens) -> can be used to measure intrinsic extinction of chopping system.
- Mu2ell beam time-structure
 - 6.15385 nsec bunch
 - populate 1 every 3 bunches for 100 ns: 1.15x10⁹ H-
 - add 259 empty bunches for a total 275 bunches (or 1.69 μ s)
 - batch frequency: 591 kHz

"Continuous" beam of 1.15×10^9 H⁻/batch at 591 kHz \implies rate R_{H-} = 6.8 x 10¹⁴ H⁻/s

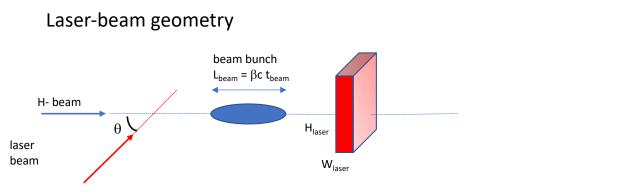
To measure an extinction requirement of 10⁻¹¹

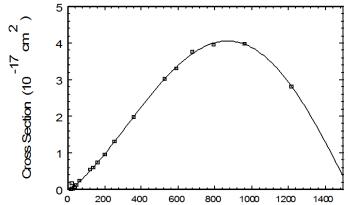
we want to be sensitive to $n^{\text{ext}} = R_{\text{H}-} \times 10^{-11} = 6.8 \times 10^3 \text{ H}^{-}/\text{s} = 4.4 \times 10^{-5} \text{ H}^{-}/\text{bunch}$

Assuming we can observe the single H⁻ in a bunch at a rate of once per batch

- 591 kHz batches x 4.4 x 10⁻⁵ H⁻/bunch = 26 H⁻/s \implies 15600 H⁻/600 s
 - \Rightarrow 0.8% extinction rate measurement in 10' assuming 100% efficiency for single observation
- if we aim at for 5% measurement in 10' \Rightarrow 400 H⁻/10' \Rightarrow 0.11x10⁻⁵ H⁻/bunch \Rightarrow 2.5% single observation efficiency

Photo-ionization of H- beam


H- is H atom plus second electrons, ie bound state of p+ and two e- with no excited states. Binding energy of second electron is 0.756 eV [1]. Binding energy of the first 1s electron is 13.6 eV.


H- can be neutralized by:

- interaction with residual gas in beam pipe (gas stripping cross-section $\approx 3x10^{-18}$ cm²/atom)
- photo-ionization induced by photon of energy above 0.756 eV, ie λ <1640nm

Photo-ionization cross-section vs photon λ , as found in [2], is reported below. It peaks at about $4x10^{-17}$ cm² for a λ =820 nm, or eV=1.51 eV.

Q-switched laser discharges in few ns and is able to provide instantaneous power of order 10 MW (ie 100 mJ pulse energy in 10 ns). Laser based on solid Nd:YAG or ytterbium doped fibers produce light at 1064 nm, for which photo-ionization $\sigma(\lambda) = 3.66 \times 10^{-17} \text{ cm}^2$.

Neutralization fraction f_{neut}

The probability that an H- passing through a laser beam will be neutralized is[4]:

$$f_{neut} = \left(1 - e^{-\Phi_{CM}\sigma(\lambda)\tau}\right)$$

where, using the symbols introduced in the previous page:

- $-\sigma(\lambda)$ is the photo-electron cross-section
- $-\tau$ is the transit time of an ion through the laser beam, or $W_{laser}/\beta c$

if
$$W_{laser} = 1 mm(*)$$
, E=800/25/0.75 MeV beam has $\tau = 4/14.7/83.5 \text{ ps}$)

 $-\Phi_{CM}$ is the flux of photons at the interaction in the H⁻ rest frame

The flux of photons in the H- rest frame is equal to:

$$\Phi_{CM} = M \left(\frac{E_{laser}\lambda_{lab}}{hc \tau_{laser}}\right) \left(\frac{1}{A_{laser}}\right)$$

where: E_{laser} is the laser energy

 τ_{laser} is the laser pulse duration

 A_{laser} is the laser cross-section, ie $W_{laser} X H_{laser}$

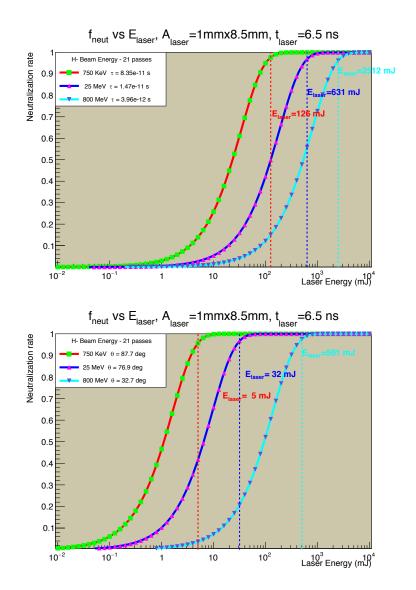
 ${\cal M}\,$ is the number of crossings between the H- beam and the laser

Mnemonics

For a given E_{laser} , f_{neut} increases (i.e. line moves to the left) for anything that make the exponent increase:

- longer τ , higher $\sigma(\lambda)$
- longer λ_{lab}
- shorter τ_{laser}
- smaller Al_{aser}

Neutralization rate for higher beam energy

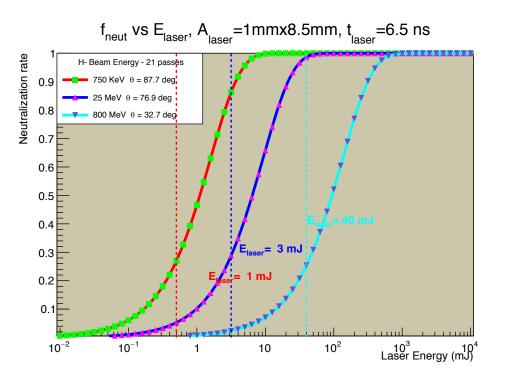

Following calculation done by D. Johnson in [3] for his laser-notcher realization, for H- beams of of 750 KeV vs 25 MeV vs 800 MeV

keeping constant

 A_{laser} = 1mm x 8.5 mm τ_{laser} = 6.5 ns

I get the neutralization fraction vs E_{laser} shown in the top plot. The dashed line shows the 95% rate.

Adding a cavity with M=21, brings down the laser energy requirement to what shown in the lower plot. The dashed lines show the 95% neutralization rate.


Beam Power

To get a 2.5% single H⁻ observation, let's assume 25% electron knock-off probability and 10% single electron identification efficiency.

For 25 MeV beam 25% neutralization rate with a laser pulse of 25 ns is obtained with a 3mJ laser energy, corresponding to 461kW.

The repetition rate is 590 kHz.

For 800 MeV, the laser power requirement increases to 6.1MW.

Bibliography

- *1) R.Connolly et al* 2012 JINST 7 P02001
- 2) R.Connolly at al. NIM A312 (1992) 415-419
- 3) D. Johnson et at, Fermilab-Conf-16-388-AD