

R&D ideas for CRV at Mu2e-II

Yuri Oksuzian

Yuri Oksuzian

Mu2e and Mu2e-II Proton Beam Parameters

Parameter	Mu2e	Mu2e II	Units
Total Protons on Target (3 yr)	4.7×10 ²⁰	5.2×10^{22}	protons
Pulse Repetition Rate	590	500 - 1250	kHz
Time Between Pulses	1695	800 - 2000	nsec
Pulse Base Width	250	100	nsec
Extinction Level	10 ⁻¹⁰	10 ⁻¹¹	
Average Intensity per Pulse	3.9×10 ⁷	(1.4 × 10 ⁹	protons/pulse
Pulse-to-Pulse Intensity Variation	<50	<10	%
Beam Kinetic Energy	7946	800	MeV
Beam Power	7.3	100	kW
Duty Factor	25	90	%

NOTEs:

- Blue numbers are calculated from the other parameters.
- Total POT assumes 63% accelerator up-time (2×10^7 sec/yr)

7

CR background: CRV coverage

- CRV needs to reject 780 events over its lifetime
- Dominant (74%) fraction of muons enter from from the top
- Other CRV regions reject much smaller fraction of muons, and require much smaller efficiencies
- CR background component : 0.075 events

CR background: CRV coverage

- We optimize coincidence requirements such that critical CRV regions have the highest efficiency possible
 - CRV-Top efficiency is > 99.99%
 - ▶ CRV-U efficiency is ~ 5%
- Dominant contribution comes from CRV-Top, CRV-L and CRV-R

CR background: No CRV coverage

- A special simulation of events going through the TS hole with 257X the total live time (770 years) we found 39 events that mimic conversion electrons
- This was the largest background for Mu2e
- Two-thirds of this component can be reduced by absorbers and CRV-TS extension

Cosmic Ray estimates for Mu2e-II

- CR background estimate for Mu2e-I (docdb-7464):
 - Total: 0.247
 - CRV coverage: 0.075
 - No CRV coverage: 0.152
 - has been recently reduced to 0.05
 - Updated total CR background is 0.125 = 0.075 + 0.05
- Mu2e-II will operate at x3 higher duty factor
 - Expected CR background at Mu2e-II: 0.375 = 0.225 + 0.15
 - Assumed CR background at Mu2e-II: 0.16

Category	Source	Events (Al)	Events (Ti)
Intrinsic	μ decay in orbit	0.26	1.19
	Radiative μ capture	<0.01	< 0.01
Late Arriving	Radiative π capture	0.04	0.05
	Beam electrons	<0.01	<0.01
	μ decay in flight	<0.01	<0.01
	$\pi{ m decay}$ in flight	<0.01	<0.01
Miscellaneous	Anti-proton induced		
	Cosmic ray induced	0.16	0.16
Total Background:		0.46	1.40

Table 1: Estimated background yields for the Mu2e-II experiment assuming an aluminum (AI) or a titanium (Ti) stopping target. These studies were performed for a proton beam energy of 1 GeV. The total uncertainty is about 20%. Reproduced from arXiv:1307.1168. Note that, unlike in the case of aluminum, the titanium analysis has not yet been rigorously optimized.

Improving CRV efficiency

- The dominant fraction of CR background enters through CRV-Top in stopping target and calorimeter regions
- CRV inefficiency is driven by the gaps between di-counters and modules
 - Build modules with reduced gaps: remove shims between di-counters, shim strong-backs
 - Additional CRV coverage between module gaps
- Higher light yield will further improve efficiency
 - Fill counters with silicon/epoxy in a critical regions
- Other high efficiency veto detector technology?

Reducing irreducible

- CR background entering through TS hole is a major background at Mu2e-II
- We currently reduce this background with passive absorbers
- We can consider:
 - Additional passive absorbers
 - CRV along the beam-line or inside DS

Projections

Filling counters

- Dubna/UVa group has developed a plan to fill counters with silicone resin
- The light yield improves by 40% after filling
- Silicone is rad hard, unlike BC-600

8/27/18

- Natural aging doesn't show any transparency degradation of silicone resin
- Silicone resin remains liquid which might leak during modules production
- Find a filler that solidifies at filling holes: UV cured epoxy, BC-600 with hardener at holes only...
- Fillers need to be tested for rad hardness and aging

- Currently, there is a bug in art that prevents me from estimating CRV rates and dead-time. Rob is working on a fix
- From previous studies, neutron/gamma fluxes at Mu2e are expected to be higher by a factor of 2-3
 - Rates in CRV-U and CRV-Ext regions are > 1 MHz
 - Investigate finer (2x2.5 cm) granularity CRV
 - Other CRV technology?
 - Dead-time is >10% and sensitive to beam intensity fluctuations
 - Enhanced shielding
 - More effective concrete shielding
 - More effective shielding at PS. Tungsten HRS will be beneficial against fast neutrons

CRV Aging

- Polystyrene aging can be caused by various phenomena: oxidation, crazing due to stress dissipation, interaction with solvents in air
- We've been studying CRV di-counters aging:
 - 1. Natural aging using source yields 10% aging in the first year
 - 2. Natural aging at the test beam yields 10% aging in the first year
 - 3. Accelerated aging yields
 - 5% aging in the first year
 - 2% aging average rate over 10 years

Plans:

- Continue measuring the aging rate
- If counters keep aging at 10%/year, we need to consider rebuilding CRV for Mu2e-II
- Identify and address the dominant process responsible for aging

Backup

Natural aging setup

- Assembled 3m long di-counters in 2017
 - Dry counters
 - Ist baseline CRV counter with a reflector on one side
 - > 2nd baseline CRV counter with a dual readout
 - Wet counters
 - > 3rd counter holes are filled with resin and reflector on one side
 - ♦ 4th counter holes are filled with a dual readout
- Occasionally put Cs-137 (1 mCi) to measure SiPM currents

Data selection

- Collected the data starting from July 2017
- Considered only the data that is within a temperature range of [21.3; 21.8] C
- Look at current (dark current subtracted) trend vs time to extract the aging rate

Currents for dry counter with reflector

Setup

- Twelve dicounter and fiber samples were put in an oven for aging.
- One sample of each set was removed periodically to have multiple data points through time.

Measurement

Dicounter measurement apparatus

Fiber measurement apparatus

- After all samples were removed from the oven, they were measured.
- The light yield from the dicounters was measured with a removable jig made of fibers attached to the counter electronics to ensure consistency.
- The output current from the electronics was used to indirectly measure the light gain from the dicounters.
- The light through the fibers was measured using a rotating drum to obtain light as a function of distance.
- The light gain was measured using a photodiode outputting ADC counts.

Accelerated Aging of Polystyrene

- The fiber and dicounter aging can be accelerated by heating samples in an oven.
- An aging factor between the heated samples and a sample kept at a reference temperature can be found using the Arrhenius equation:

$$f_{aging} = e^{\frac{E_a}{R}(\frac{1}{T_{ref}} - \frac{1}{T_{high}})}$$

- E_a is the activation energy of the reaction, and R is the universal gas constant.
- Using the aging factor, the effective aging time can be found:

$$time_{eff} = f_{aging} * time_{in oven}$$

Results

The dicounter aging fit a double exponential,

indicating a non-constant

The aging is 8% in the first 2 years (4% per year avg) but 23% in the first 10 years (2.3% per year avg).

The fiber aging fit with a simple exponential.

The fiber aging is trivially small — less than 1% aging per year.

Conclusion

- The dicounter aging has a non-constant decay with a transient fast component and a persistent slow component.
- The current estimate for aging is 30% aging after 10 years, however the studies show 23% aging.
- The activation energy is not well known, the plot below shows the decay rate as a function of activation energy.

The curve was generated by fitting the data for increasing values for activation energies.

Test beam

Figure 6. A comparison between the PE distributions for a counter that was used in the 2016 and 2017 test beam run. The result from the top(left) and bottom(right) counters in a discounter are shown.

	PE Yield	Width	Width / PE Yield	Ratio
Top counter				
2016	235.4	66.0	0.28	
2017	209.2	60.0	0.29	0.89
Bottom counter				
2016	231.5	64.0	0.28	
2017	210.1	60.0	0.29	0.91
	Yuri Oksuzian		CDV for Mu2o II	

8/27/18