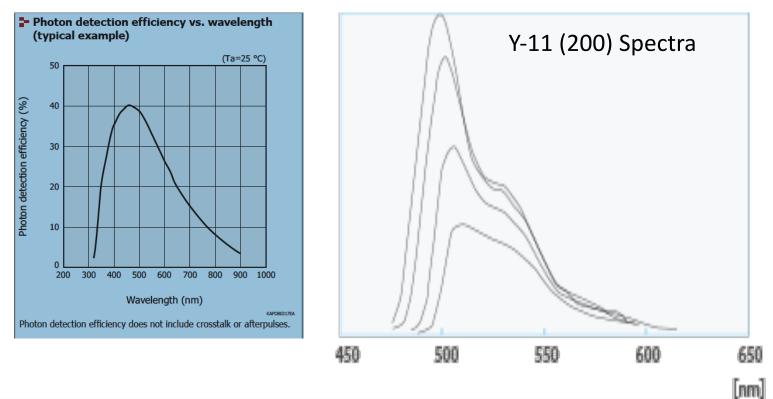


Northern Illinois University

SiPMs for Mu2eII

Mu2ell Workshop August 29-30, 2018 Northwestern University

General Outlook



- Even with threefold increase in integrated dose, no insurmountable problems with SiPMs.
- Will continue to lose single PE resolution but will have considerable experience at cross calibration and annealing.
- Main issue will be impacts of higher dark rate or noise which will require control with higher thresholds. Can respond by increasing the signal or reducing the rates.

Mitigation

 To increase the signal, a straightforward approach would be better matching of photon detection efficiency (PDE) to the WLS fiber (new devices).

Mitigation

- To reduce the rates,
 - Custom active area (new devices)
 - Junction electric field engineering (new devices)
 - Faster recovery time (new devices)
 - *In situ* annealing schemes.

Considerations

- Overall optimization required as positive and negative correlations between device characteristics.
- Need to address SiPM packaging because approaching currents where self-heating effects can become important and heat dissipation of packaging would become relevant
- Requires close collaboration with vendor for a more custom device. Should begin as soon as possible!
- There are other mitigation paths associated with the scintillator and electronics.
 - Increased photon yield
 - Faster/higher rate electronics
 - Sensor coincidence on same site or strip