Mu2e → Mu2e-II Recent Progress on Mu2e-II Proton Beamline Studies

David Neuffer

August 2018

PIP-II and mu2e-II

- Can PIP II beam be injected into similar mu2e detector?
 - 8 GeV p \rightarrow 0.8 H⁻
 - ~ 8 kW \rightarrow ~100 kW

> mu2e-II challenges

- Iower energy p-beam injection
- more beam power on target

≻ H⁻ stripping

foil heating

Transport into target through production solenoid

- requires changes from mu2e baseline
- Extinction options

> On trajectory toward construction – completion in 2026

- CD-1 \rightarrow CD-2/3a in spring 201
- The Major Fermilab Accelerator Project

Performance Parameter	Current	PIP-II	
Linac Beam Energy	400	800	MeV
Linac Beam Current	25	2	mA
Linac Bunch frequency	201.25	162.5	MHz
Linac Beam Power to Booster	4	17	kW
Linac Upgrade potential		1.6 MW CW	
Mu2e Upgrade Potential (800 MeV)		>100	kW
Booster Protons per Pulse	4.3×10 ¹²	6.5×10 ¹²	
Booster Pulse Repetition Rate	15	20	Hz
Booster Beam Power @ 8 GeV	80	166	kW
Beam Power to 8 GeV Program (max)	32	83	kW
Main Injector Protons per Pulse	4.9×10 ¹³	7.5×10 ¹³	
Main Injector Cycle Time @ 60-120 GeV	1.33*	0.7-1.2	sec
LBNF Beam Power @ 60-120 GeV	0.7*	1.0-1.2	MW
LBNF Upgrade Potential @ 60-120 GeV	NA	>2.0-2.4	MW

- > PIP-II front end can produce arbitrary bunch structures with:
 - High beam quality !
 - $\epsilon_{T, N} \cong$ 0.3 mm-mr; $\epsilon_{L, N} \sim$ 1.1 keV-ns (0.004 ns \times 0.275 MeV)
 - Peak current ≤ 5 mA
 - Can deliver 800-MeV protons to a second generation Mu2e
 - while providing beam to Booster/MI/Dune

For Mu2e-II

- Use PIP-II (800 MeV) as beam source at up to ~0.1 MW
 - similar beam pattern as used for Mu2e
 - ~100ns beam on / 1.7µs cycle
- Reuse as much as possible of the baseline Mu2e experiment
 - Follow similar experimental scenario
 - Improve if possible

Possible beam structure (matched to Mu2e)

- 162.5 MHz chopped beam (~1.76 ×10⁸/bunch @ 4.6ma)
- Beam pulse length: ~50 nsec (8 bunches) 1.4 ×10^9 pulse
 - Mu2e cycle: 1.693 μsec
- Three-year run achieves >~single event sensitivity of 2×10⁻¹⁸

mu2e→mu2e-ll

≻ mu2e →mu2e-ll

shorter pulses

timing comparison

• K. Knoepfel et al.

-

How the backgrounds change

		Events		
Category	Source	Cu	urrent	PX (Al)
Intrinsic	μ decay in orbit		0.22	2.14
	Radiative μ capture	<	< 0.01	< 0.01
Late-arriving	Radiative π capture		0.03	0.04
	Beam electrons	<	< 0.01	< 0.01
	μ decay in flight		0.01	0.01
	π decay in flight	<	< 0.01	< 0.01
Miscellaneous	Antiproton		0.10	—
	Cosmic ray		0.05	0.16
	Pat. Recognition Errors	<	< 0.01	< 0.01
Total Background			0.41	2.36

Dominant hackaround by far is DIO for PX (Al)

Extinction

- kickers designed to deliver beam or no beam
- > 10⁻⁴ extinction factor ..
- need >10⁻¹¹ for mu2e-II
- need secondary extinction

spill uniformity

- linac pulse-to pulse variation fairly small (few %)
- variation in mu2e slow extraction is intrinsically large
 - "One should not be expecting beam intensity variations below ±50% in Mu2e" –Nagasleev .

> 800 MeV beam line from PIP-II

- directly to production target
 - no Recycler, DR, slow extraction
 - 0.3 mm-mrad emittance H⁻
- starts with transport to Booster low-field (B<0.25 T) for H⁻
 - switchyard kicker splits (Booster /mu2e)
- mu2e line continues into M4 line
 - uses same magnets at lower strength (1/6)
 - could use mu2e extinction ...

PIP-II Linac is H⁻

beam enters ~4T field $13^{\circ} \rightarrow 0.9$ T transverse H⁻ stripping time (W. Chou) $\tau = \frac{3.07 \cdot 10^{-14}}{3.2PB_t} \exp\left(\frac{44.14}{3.2PB_t}\right) s$ P=1.463 GeV/c

 $c\tau = ~8 \text{ cm}$

 $(6 \text{km at } B_t/2)$

Beam should be stripped upstream

orbit bump onto stripper foil could add to extinction (Roberts)

- Possible foil location is halfway through straight section (at s = 257.5)
 - $\eta_x = 0$, $\eta_y = 0$, $\beta_x = 3.4m$, $\beta_y = 15.2m$
 - Beam spot size is small (1.7 × 0.8 mm), however.
 - more intense spot heating of foil ~5600 J/gm peak
 - reoptimized lattice with larger beam spot (and collimation to localize foil-induced beam loss) is desirable
 Possible Foil location

> Passing through foil, H^- beam strips, to H^0 , H^+

 $f_{H^{-}}(t,\beta) = Exp[-(0.479 + 0.0085) \cdot 0.05t / \beta^{2}]$

 $f_{H^0}(t,\beta) = \frac{0.479}{(0.479 + 0.0085 - 0.187)} \Big(Exp[-(0.187) \cdot 0.05t / \beta^2] - Exp[-(0.479) \cdot 0.05t / \beta^2] \Big)$

$$f_{H^{+}}(t,\beta) = 1 - f_{H^{0}}(t,\beta) - f_{H^{-}}(t,\beta)$$

Use ~400 μ gm/cm²

- 99.2% stripped to H⁺
- requires ~2μ graphite
 or 1.2μ diamond
- ~1% beam loss from stripping
 1 kW beam loss

For Graphite 0.1mm=200 $\mu g \eta / c m^2$

- Multiple Scattering and Energy loss effects are fairly small
 - for $\beta_t = 10m$, $\Delta \varepsilon_N = 0.011$ mm-mrad
 - $\epsilon_N \cong 0.3$ mm-mrad from linac
 - The energy loss is ~ 1.0 keV (~ 10⁻⁶),
 - energy spread increase is less
 - Optics should be almost unchanged, provided magnet polarities are all switched downstream of the foil.

> Energy loss of H^{-} p heats foil:

$$\rho VC_h \frac{dT}{dt} \cong \frac{dE_{H^- \to p}}{ds} t \frac{I}{e} - 2A\varepsilon \sigma_B (T^4 - T_0^4)$$

heating due to beam E loss, minus black body radiation

• (Liaow et al.

> Equilibrium temperature is given by:

$$(T_{eq}^{4} - T_{0}^{4}) = \frac{dE_{H^{-} \to p}}{ds} t \frac{I}{\sigma_{B} 2\pi\varepsilon\sigma_{x}\sigma_{y}e}$$

• for nominal focus, $T_{eq} \cong 760^{\circ}$ K

• a slightly larger focus (β^* =30m) would reduce this to 540° K

Heating is moderated by cw operation, and only one pass of beam through foil

foils in SNS, Booster peak at up to 1800° (T_{eq}~1000 °)

Foil heating:

- Numerical solution of heating equation:
 - T_{eq}= 760° K (0.8×1.7 mm)
 - Iarger spot:
 - T_{eq}= 540° K (2.5mm)
- Can spread out heating by moving beam across target
 - or moving target rotating
- Foil heating is relatively modest and manageable
 - at 100kW
 - but at 1MW
 - T → 1350 °K 940 °K

Extinction Considerations

16

14 12

10

8 6

4 2 0

-2

RWCM signal, mV

Need ~10⁻¹¹ extinction

- Extinction from linac should be better than from Delivery Ring
 - < 10⁻⁴
- measure in PIP2IT?

Need additional extinction

- can use Mu2e AC dipole extinction
 - Kick ~ Sin(π x/t_o)-f Sin(π hx/t_o)
- Geometric emittances of PIP-II and mu2e Pbeam are similar
- ε_{N,Rms}: 2.5 (8 GeV) → 0.3 (0.8 GeV) mm-mr
- ε_{geo,RMS}: 0.26 (8 GeV) → 0.19 (0.8 GeV) mm-mr
- ~same apertures in same lattice
 - Bρ: 29.84 → 4.91 T-m
- Use magnets and fields at 1/6 strength

Extinction comments

- Mu2e extinction is designed to accept ±125ns
 - Kick ~ Sin(π x/t_o)-f Sin(π hx/t_o)
 - **h** harmonic (15), f =0.084

- Mu2e-II bunch length could be ~2× shorter.
 - can reduce window a factor of 2 by changing h, f, and Kick strength
 - K=2.5, h=21, f=0.055

Should work at least as well as for Mu2e

Primary Beam Transport through the Solenoid:

8 GeV proton beam enters PS:

- ≻0.6 m off-axis
- ➤vertical pitch =~ -3°
- >horizontal bearing = ~13.6 °

➢For 8 GeV beam, the proton trajectory is well approximated by a straight line.

This is not the case at 800 MeV

- S. Werkema

800 MeV p would not follow 8 GeV path

- miss target and hit shielding
 - T. Roberts
- Can we modify motion to ~fit mu2e ?

- Unlike 8 GeV beam, 800 MeV beam is significantly deflected by B-field
 - 8.89 → 1.46 GeV/c

If sent along same direction, would miss target by ~30cm

hit HRS shielding

Variation for mu2e-II

- Require beam to go through entry point and target (G4BL Mu2e modell
 - (x=0.6, y=, at z=0) and
 - (x=y=0 at z=2.5m)
- Use linearized magnetic field

$$x'' = \frac{B}{B\rho} y' + \frac{B'}{2B\rho} y$$
$$y'' = -\frac{B}{B\rho} x' - \frac{B'}{2B\rho} x$$

- for 800 MeV, 8 GeV
- Third order terms: $x'' = +Sy' + \frac{1}{2}S'y + \frac{1}{4}(2x'^{2}y'S + x'^{2}yS' + 2y'^{3}S + yy'^{2}S')$ $y'' = -Sx' - \frac{1}{2}S'x - \frac{1}{4}(2x'y'^{2}S + xy'^{2}S' + 2x'^{3}S + xx'^{2}S')$

- Requires change in direction of injection
- A path compatible with the Production solenoid is possible
 - need initial vertical angle (~10.5°), and reduced horizontal angle (~10°)
 - beam wobbles away from straight line (by ~10cm before target)
 - (Mu2e entry beam pipe is too narrow)
 - emerges after target in different location and angle

(horizontal→vertical)

Compare x, y for 8, 0.8 GeV

	x,y (8)	x',y' (8)	x,y (0.8)	x', y ' (0.8)
0	0.614, 0.086	-13.5°, -3.4°	0.614, 0.086	-9.9°, -10.5°
2.5	0, 0	-14.0°, 0°	0, 0	-12.0°, 10.5°
4	-0.37, 0.042	-13.6°, 3.2°	-0.067, 0.384	7.95°, 13.75°

0.2

Compare x, y for 1, 2 GeV

	х, у (1)	x', y' (1)	x, y (2.0)	x' , y ' (2.0)
0	0.614, 0.086	-10.8°, -9.4°	0.614, 0.086	-12.78°, -5.86°
2.5	0, 0	-12.7°, 8.7°	0, 0	-13.87°, 3.435°
4	-0.144, 0.357	3.29°, 14.9°	-0.321, 0.194	-9.56, 10.78°

Verified in G4Beamline Mu2e Model

- Direct copy misses target by 1-2cm
 - tweak initial momentum to match
- Requires minor tweaks from Mathematica model
 - $P_y \rightarrow (260 \rightarrow 230 \text{ MeV/c})$
 - ~1° correction

x projection

3-D projection of trajectories..

- 0.8 GeV beam would not meet proton absorber
 - unless steered toward it …
 - ~0.3 T-m bend ..
 - Or inject ~vertically
 - exiting beam would be horizontal
- proton absorber changes?
 - multiple scattering in target is six times larger angle ($\theta_{o} \rightarrow 3.6^{\circ}$ at 16cm W)

Target considerations

> Mu2e

- 8 GeV, 8 kW (0.7 kW in target)
- passively cooled freestanding W target
- 3mm radius, 16cm long

> Mu2e-II

- 800 MeV, 100kW (22.5 kW in target)
- Target DPA >> 1 \rightarrow (rad damage)

> Update requires

- active cooling (?)
- rastering on target
- could lose ~1/3 of µ's from target reabsorbtion

Summary

- A Mu2e-II scenario using PIP-II 800 MeV H⁻ beam could follow the mu2e baseline
- Minimal changes needed:
 - PIP-II to mu2e beam transport
 - need $H^- \rightarrow p$ stripping
 - beam must enter production solenoid at different angle
 - and possibly location?
 - production solenoid shielding modified ...
 - Proton Absorber (after target) must be changed
 - ~10× more irradiation in production solenoid/target vault
 - target for 10× power (and 800 MeV)
 - could reuse AC Dipole extinction system

- More extensive variations from mu2e should be considered and compared by mu2e-II task force
 - Higher power ?
 - 100 kW \rightarrow MW
 - changes in timing pattern 1.69 μ s \rightarrow ?
 - Ti or Au target
 - change collimation
 - no p-bar, K, etc.
 - Change extinction
 - use stripping foil
 - Include other experiments using PIP-II beam
 - $\mu \rightarrow e \gamma$ using ~cw PIP-II source ??
 - Use forward muons ?

