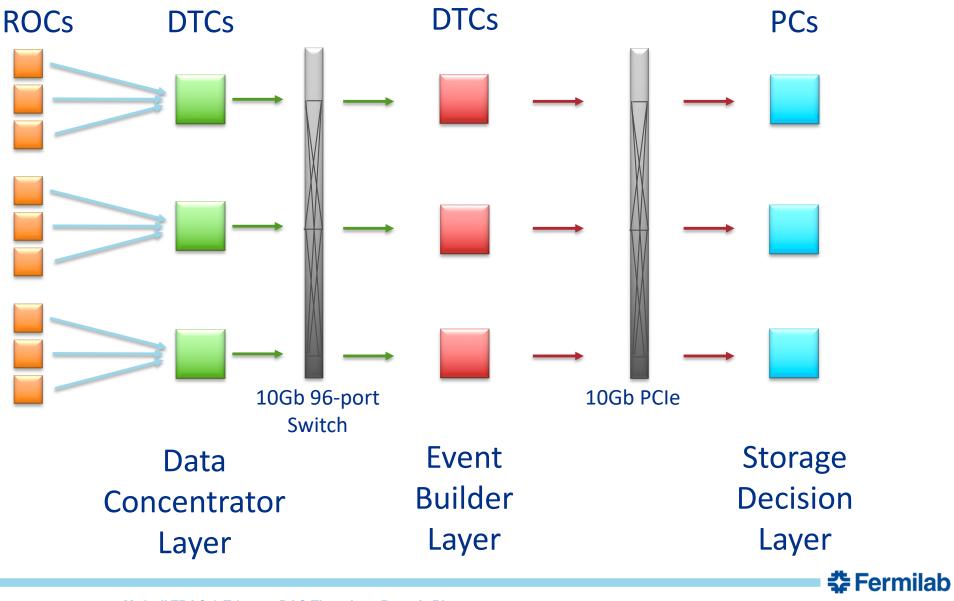
Fermilab **BENERGY** Office of Science

Mu2e II Trigger/TDAQ Summary

B. Echenard, G. Pezzullo
CalTech, Yale *for the Mu2e II Trigger Working group*8/30/18


Mu2e II implications for TDAQ architecture

- Larger detector occupancy & beam-duty cycle
 - Larger bandwidth needed to handle expected data flux
 - x3-5 in the instantaneous rate, x3 duty cyle
 - Higher rejection needed
 - Guidance: no more than x2 in data storage 14 PB/y
 - we need a factor x5 in the rejection
 - Higher radiation delivered to the ROCs
- **PIP-II beam structure** with no phase shift in timing
 - Consider to lock system clock to 162.5 MHz accelerator clock IF ok with electronics
 - Reduced OFF Spill periods (to no OFF Spill time?) implies less advantage to large front-end buffers for streaming data

2

🚰 Fermilab

Generic Data Readout Applied to Mu2e-I

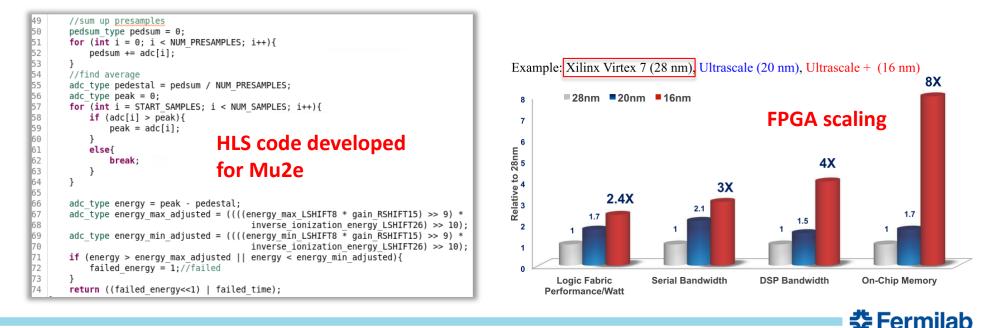
Mu2e-II TDAQ & Trigger - DAQ Thoughts - Ryan A. Rivera

TDAQ architectures for Mu2e-II

- Expand current Mu2e architecture (1 level trigger):
 - assuming x2 gain in tech, extrapolation of Mu2e system requires x5 more hardware
 - larger DAQ room, power and cooling
 - 100 Gb switches (Vs 10 Gb of today system)
 - Will existing algorithm performance scale (now few ms/evt)?
 - With retuning?

• 2 level Trigger

- do some processing on FPGA and the remainder on software
 - Where are the boundaries?
 - can we make a L1 trigger decision at FPGA level?
 - Need to develop FPGA algorithms


🎝 Fermilab

TDAQ architectures for Mu2e-II (CRV)

- Independent CRV trigger on FPGA
 - No significant OFF-spill period
 - How much Cosmic data do we need?
 - Develop dedicated CRV trigger?

FPGA considerations (1)

- High Level Synthesis (HLS) is now good enough to rival manual VHDL or Verilog algorithm development.
- Allows physicists to easily develop FPGA algorithms
 - development can take place now hardware is not needed!
- CMS is heavily investing in HLS
 - <u>hls4ml</u> collaboration developing neural network tools using HLS

Current Mu2e timing architecture Mu2e timing architecture

- Mu2e has chosen a stable 40 MHz clock (system clock) from Clock Fan-Out (CFO) module
 - Mu2e system clock is not locked to the Delivery Ring clock → experiment and beam are asynchronous
- CFO receives electrical signal associated with microbunches (DR turn marker), which is used to tell us...
 - Microbunch timing with precision ~1 ns
 - Timing within spill

See docdb-19095 for details

8/30/18

🛟 Fermilab

nilab

Mu2ell beam timing

First thoughts on TDAQ thoughts re: beam timing

- Given increase of duty cycle from 25% to 97%...
 - Pre-processing step with FPGA's? "Level-1+HLT" architecture?
 - When to collect cosmic rays?
 - When to perform calibrations?
- Given neither resonant extraction nor Delivery Ring...
 - Implications of smaller pulse-to-pulse variation? (no spill structure)
 - Work out new protocol to communicate "PIP-II beam to Mu2e" (i.e., replacement of DR turn marker)
- Given no phase shift of PIP-II RF...
 - Consider to lock Mu2e-II system clock to 162.5 MHz accelerator clock
- Given that PIP-II timing is based on pulses every 6.15 ns...
 - No action regarding structure within microbunch
 - Don't omit possibility to vary spacing between microbunches

8

辈 Fermilab

nilab

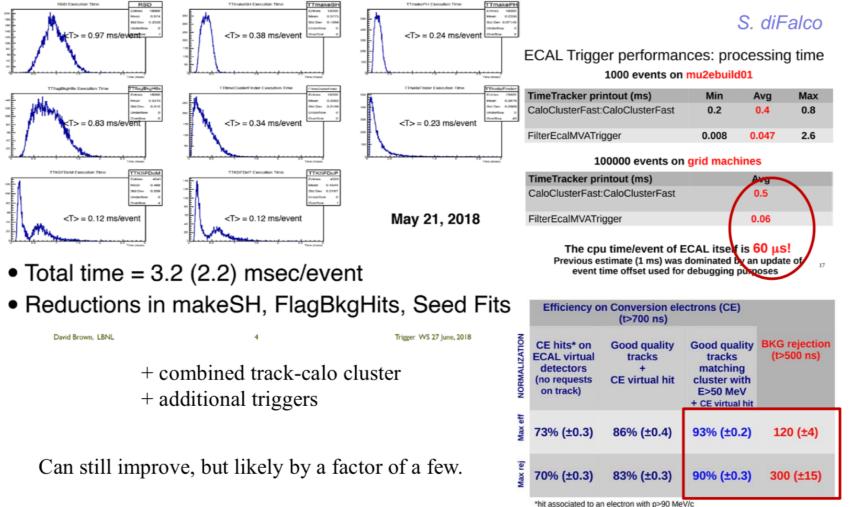
VTRx

- We need rad hard optical link for Tracker and Calo ROCs
- Experiment "standard" for data transmission between ROCs and DTCs is the VTRx from CERN
- For Mu2e II we can follow CMS development for the next generation of rad hard optical links
- Keep looking for other options as well

Summary / R&D projects

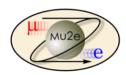
- Two possible architectures to investigate:
 - 1 level: "expanded" Mu2e TDAQ system
 - 2 levels: L1 Trigger + HLT
- Develop trigger algorithms for FPGA:
 - Needed to set requirements on the hardware
- Evaluate performance/costs of the proposed architectures
- Cosmic rays study for CRV trigger
- Sim inputs for evaluating the expected doses in the ROCs

11 G. Pezzullo I Mu2e II Workshop @ Northwestern


8/30/18

Mu2e expected Trigger performance

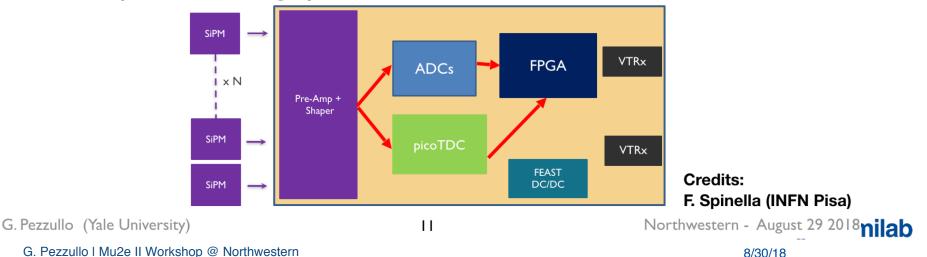
Triggers

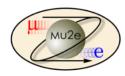

Track Trigger Timing Status (triggerDev) D. Brown

Workshop @ Northwester

nilab

p. 5


Possible ADvanceD-DIRAC



- Instead of sampling the waveform we want to use TDCs for precise time reconstruction
- Rad hard ADC @ 50 MHz for charge reconstruction?
- The **PolarFire** FPGA is supposed to be sufficiently rad hard
- VTRx optical transivers
- The board will include also the PreAmp+shaper (thanks to the SiPM high gain)

⇒TID reduction & neutron flux by a facto of ~ 10

⇒simplified cooling system

Future Tracker ROC?

- We don't know yet the Mu2e II tracker design!
- **Assuming** to use the same technology, we need smaller straws to handle the larger hit rate, thus more channels
 - "bigger" DRAC boards?
 - → larger bandwidth required (?)
- BUT, scaling to x10 the expected radiation levels makes majority of the components not well suited
 - R&D to find commercial rad tolerant components
 - possible mitigation strategies in the experimental setup?
 - improved shielding design
 - changes in the beam line