

Temporal Response of Ultrafast Inorganic Scintillators to Hybrid Hard X-ray Beam at APS, ANL

Ren-Yuan Zhu

California Institute of Technology

August 29, 2018

Presented in the Mu2e-II Workshop at Northwest University, Chicago

Ultrafast Materials & Applications UMA Collaboration, July 2-3, APS, ANL

Junqi Xie, Robert Wagner, Marcel Demarteau, Lei Xia

Argonne National Laboratory

Bernhard Adams

Incom, Inc.

John Katsoudas

Illinois Institute of Technology

Zhehui Wang, Xuan Li

Los Alamos National Laboratory

Renyuan Zhu, Liyuan Zhang, Chen Hu

California Institute of Technology

Yanhua Shih, Thomas Smith

University of Maryland, Baltimore County

- Photons and electrons are fundamental particles.
 Precision e/γ measurements enhance physics discovery potential.
- Performance of crystal calorimeter in e/γ measurements is well understood:
 - The best possible energy resolution;
 - Good position resolution;
 - Good e/ γ identification and reconstruction efficiency.
- Challenges at future HEP & other applications:
 - Ultrafast and rad hard crystals at the energy frontier (HL-LHC);
 - Ultrafast crystals at the intensity frontier (Mu2e-II);
 - Ultrafast crystals for GHz hard X-ray imaging (Marie).

High-Energy and Ultrafast X-Ray Imaging Technologies and Applications

Organizers: Peter Denes, Sol Gruner, Michael Stevens & Zhehui (Jeff) Wang¹ (Location/Time: Santa Fe, NM, USA /Aug 2-3, 2016)

The goals of this workshop are to gather the leading experts in the related fields, to prioritize tasks for ultrafast hard X-ray imaging detector technology development and applications in the next 5 to 10 years, see Table 1, and to establish the foundations for near-term R&D collaborations.

Performance	Type I imager	Type II imager			
X-ray energy	30 keV	42-126 keV			
Frame-rate/inter-frame time	🗾 0.5 GHz/2 ns	3 GHz / 300 ps			
Number of frames	10	10 - 30			
X-ray detection efficiency	above 50%	above 80%			
Pixel size/pitch	≤ 300 μm	< 300 μm			
Dynamic range	10 ³ X-ray photons	≥ 10 ⁴ X-ray photons			
Pixel format	64 x 64 (scalable to 1 Mpix)	1 Mpix			

Table I. High-energy photon imagers for MaRIE XFEL

2 ns and 300 ps inter-frame time requires ultrafast sensor

A BaF₂:Y Based Front Imager

- BaF₂ has good efficiency for hard X-rays.
- Its fast scintillation with sub-ns decay time provides bright light in 1st ns with very little tail.
- Yttrium doping in BaF₂ suppresses its slow scintillation significantly and maintains its fast light.
- A detector concept:
 - Pixelized Y:BaF₂ screen;
 - Pixelized fast photodetector;
 - Fast electronics readout.
- To be developed:

Crystals, DUV photodetectors and readout.

X-ray photons

Fast Electronics

Photo

Detectors

Fast Inorganic Scintillators

	BaF ₂	BaF ₂ (:Y)	ZnO (:Ga)	YAP (:Yb)	YAG (:Yb)	β- Ga₂O₃	LYSO (:Ce)	LuAG (:Ce)	YAP (:Ce)	GAGG (:Ce)	LuYAP (:Ce)	YSO (:Ce)
Density (g/cm ³)	4.89	4.89	5.67	5.35	4.56	5.94 ^[1]	7.4	6.76	5.35	6.5	7.2 ^f	4.44
Melting points (°C)	1280	1280	1975	1870	1940	1725	2050	2060	1870	1850	1930	2070
X ₀ (cm)	2.03	2.03	2.51	2.77	3.53	2.51	1.14	1.45	2.77	1.63	1.37	3.10
R _M (cm)	3.1	3.1	2.28	2.4	2.76	2.20	2.07	2.15	2.4	2.20	2.01	2.93
λ _ι (cm)	30.7	30.7	22.2	22.4	25.2	20.9	20.9	20.6	22.4	21.5	19.5	27.8
Z _{eff}	51.6	51.6	27.7	31.9	30	28.1	64.8	60.3	31.9	51.8	58.6	33.3
dE/dX (MeV/cm)	6.52	6.52	8.42	8.05	7.01	8.82	9.55	9.22	8.05	8.96	9.82	6.57
λ _{peak} ª (nm)	300 220	300 220	380	350	350	380	420	520	370	540	385	420
Refractive Index ^b	1.50	1.50	2.1	1.96	1.87	1.97	1.82	1.84	1.96	1.92	1.94	1.78
Normalized Light Yield ^{a,c}	42 4.8	1.7 4.8	6.6 ^d	0.19 ^d	0.36 ^d	6.5 0.5	100	35° 48°	9 32	115	16 15	80
Total Light yield (ph/MeV)	13,000	2,000	2,000 ^d	57 ^d	110 ^d	2,100	30,000	25,000 ^e	12,000	34,400	10,000	24,000
Decay time ^a (ns)	600 <mark>0.6</mark>	600 <mark>0.6</mark>	<1	1.5	4	148 <mark>6</mark>	40	820 50	191 25	53	1485 36	75
LY in 1 st ns (photons/MeV)	1200	1200	610 ^d	28 ^d	24 ^d	43	740	240	391	640	125	318
40 keV Att. Leng. (1/e, mm)	0.106	0.106	0.407	0.314	0.439	0.394	0.185	0.251	0.314	0.319	0.214	0.334

August 29 2018

Fast Inorganic Scintillators

- [1] S. Geller, J. Chem. Phys. 1960, 33: 676.
- a. Top line: slow component, bottom line: fast component;
- b. At the wavelength of the emission maximum;
- c. Excited by Gamma rays;
- d. Excited by Alpha particles.
- e. Ceramic with 0.3 Mg at% co-doping
- f. Based on Lu_{0.7}Y_{0.3}AlO₃:Ce

12 Fast Inorganic Scintillators

Scintillators with ultrafast decay time

Scintillators with fast decay time

A Few Photos on Beam Test at APS 10-ID Site (July 2 -3, 2018)

APS 10-ID Site

The Test Setup at APS

Crystals, MCP-PMT and gate unit were in the hutch at APS 10-ID site. DPO, delay generator and HV power supplier were in the control room. Signal from MCP-PMT went through a 15 m wideband SMA cable, which may compromise PMT's temporal response compared to data obtained with source.

Photek MCP-PMT 110, 210, 240

Presented by Ren-Yuan Zhu in the Mu2e-II Workshop at NWU, Chicago

Voltage (V)

https://ops.aps.anl.gov/SRparameters/node5.html

Singlet (16 mA, 50 ps) isolated from 8 septuplets (88 mA) with 1.594 μs gap. 8 septuplets (88 mA) with a period of 68 ns and a gap of 51 ns. Each septuplet of 17 ns consists of 7 bunches (27 ps) and 2.83 ns apart. Total beam current: 102 mA, rate: 270 kHz, period: 3.7 μs.

Photek PMT & gate unit for septuplet bunches to see crystal's capability for hard X-ray imaging with 2.83 ns bunch spacing.

Data were taken with

Data were also taken for singlet bunches to measure crystal's temporal response.

Time (ns)

Septuplet X-ray Imaging

Clear septuplet structure observed by BaF₂:Y, BaF₂ and ZnO:Ga, but not by LYSO:Ce and other crystals with long decay time

August 29 2018

2.83 ns X-ray Bunch Imaging by BaF₂

X-ray bunches with 2.83 ns spacing in septuplet are clearly resolved by ultrafast BaF₂ crystals, showing a proof-of-principle for the type –I imager.

Singlet Bunch by Ultrafast Crystals

Peak amplitude of BaF_2 and BaF_2 :Y is higher than ZnO:Ga and LYSO. Decay time of BaF_2 and BaF_2 :Y is much shorter than ZnO:Ga.

Rise and decay time of BaF_2 and BaF_2 : Y is longer than the y-ray source data measured at Caltech because of the 15 m cable length

BaF₂ Pulse Shape with y-rays

BGRI BaF₂ cylinders of Φ 10×10 cm³ shows γ-ray response: 0.26/0.55/0.94 ns of rising/decay/FWHM width by PMT240

Singlet Bunch by Ultrafast Crystals

BaF₂:Y and BaF₂ show ultrafast temporal response.

YAP:Yb, YAG:Yb and ZnO:Ga show a slower response.

Singlet bunch by Fast Crystals

Decay time consists with Lab data measured with source

All other crystals are too slow for GHz X-ray imaging

Summary: Temporal Response

Crystal	Vendor	ID	Dimension (mm³)	Emission Peak (nm)	EWLT (%)	LO (p.e./MeV)	Light Yield in 1 st ns (ph/MeV)	Rising Time (ns)	Decay Time (ns)	FWHM (ns)
BaF ₂ :Y	SIC	4	10×10×5	220	89.1	258	1200	0.2	1.0	1.4
BaF ₂	SIC	1	50×50×5	220	85.1	209	1200	0.2	1.2	1.5
YAP:Yb	Dongjun	2-2	Ф40×2	350	77.7	9.1*	28	0.4	1.1	1.7
ZnO:Ga	FJIRSM	2014-1	33×30×2	380	7	76*	157	0.4	1.8	2.3
YAG:Yb	Dongjun	4	10×10×5	350	83.1	28.4*	24	0.3	2.5	2.7
Ga ₂ O ₃	Tongji	2	7x7x2	380	73.8	259	43	0.2	5.3	7.8
YAP:Ce	Dongjun	2102	Ф50×2	370	54.7	1605	391	0.8	34	27
LYSO:Ce	SIC	150210-1	19x19×2	420	80.1	4841	740	0.7	36	28
LuYAP:Ce	SIPAT	1	10×10×7	385	١	1178	125	1.1	36	29
LuAG:Ce Ceramic	SIC	S2	25×25×0.4	520	52.3	1531	240	0.6	50	40
YSO:Ce	SIC	51	25×25×5	420	72.6	3906	318	2.0	84	67
GAGG:Ce	SIPAT	5	10×10×7	540	١	3212	239	0.9	125	91

Samples are ordered based on its FWHM to single bunch

August 29 2018

Summary

- Responses to 30 keV X-ray bunches were measured for a dozen of fast inorganic scintillators at the APS 10-ID beam site.
- X-ray imaging for septuplet bunches with 2.83 ns spacing is clearly demonstrated by using ultrafast inorganic scintillators, such as BaF₂:Y and BaF₂, but not others with long decay time, such as LYSO. YAP:Yb, YAG:Yb and ZnO:Ga show slower response than BaF₂.
- With sub-ns decay time BaF₂:Y and BaF₂ show the highest amplitude, fastest response time to X-ray bunches among all inorganic scintillators tested so far. BaF₂:Y crystals with suppressed slow component show no pile-up for septuplets.
- Temporal response measured for BaF₂:Y and BaF₂, however, is slower than the data obtained with γ-ray sources at Caltech last Fall, which is attributed to the APS test set-up, e.g. 15 m long cables between the MCP-PMT and the DPO.

Acknowledgements: DOE Award DE-SC001192, LANL award 483673.

August 29 2018