NANOPARTICLE-ENHANCED READOUT FOR BaF₂ CRYSTALS

Steve Magill Junqi Xie HEP Division, ANL

Collaborators : Xuedan Ma NST Division, ANL

Wei Chen University of Texas at Arlington

Motivation

- Liquid Argon Neutrino detectors –> SBN (Short Baseline Neutrinos), DUNE (Deep Underground Neutrino Experiment – Homestake Mine, South Dakota) (128 nm scintillation light)
- Liquid, Gaseous Xenon Neutrinoless Double Beta Decay -> EXO, NEXT, KamLAND-Zen (178 nm scintillation light)
- Liquid, Gaseous Xenon Dark Matter detectors -> Lux/LZ, Xenon, High Pressure Gaseous Xenon
- Crystal detectors -> Muon g-2 (PbF2 Cerenkov light), Mu2e Direct Conversion (BaF2 220 nm scintillation light), Dual-Readout Crystal Calorimeter (Cerenkov light at a future e+ecollider, EIC ep collider)

DEEP UNDERGROUND Production Soleno Proton Bean Detector Solenoid ansport Solence roduction Target Tracke

Nanoparticles - Quantum Confinement

- If the size of the nanoparticle is smaller than the electron wavelength :
 - -> Quantum Confinement condition
 - ✓ Larger energy gap
 - ✓ Splitting of energy levels
 - ✓ Strong transitions
 - -> Tunable electronic and optical properties if nanoparticle size typically < 10 nm
- Occurs on atomic/molecular level –> higher intensity, efficiency than in bulk material

Energy level splitting vs size (a); a_b* is exciton Bohr radius

Happens in the Sun - quantum confinement dominates -> many energy level splittings -> ~continuous to make white light

Nanoparticle Wavelength Shifting

Quantum Confinement changes material properties when particle size < electron wavelength

Initial Nanoparticle Sample Tests

Electron λ vs Nanoparticle Size

Nanoparticle	E _{fermi} (eV)	E _{gap} (eV)	λ _e (nm)	NP size (nm)
Si	12.6	1.1	12.4	1 - 3
CdS	7.5	2.5	15.6	4
CdTe	5.6	1.4	23.2	2
CdSe	7.1	1.7	20.4	-
LaYO	2.8	5.6	24.6	?

Quantum confinement effects

-> present when a dimension of the material is smaller than the electron wavelength (λ_e) in that material

Table shows calculations of λ_e in several of the nanoparticles that have been tested so far. Where it is known, the NP size of the tested candidates has been smaller than λ_e

-> enhancement of UV response in all but 1 case*

* No enhancement seen in a test of CdS nanoparticles deposited directly on the surface of a SiPM – the deposit was very thick and opaque to visible light – possibly no wavelength shifted light could get through the deposit

Nano-enhanced BaF₂ Readout

- Detection of 220 nm (UV) fast component of BaF₂ scintillation
 - Nanoparticle type that absorbs 220 nm emission
 - Preferably little absorption >250 nm
 - Large Stokes shift to visible wavelength range for detection
- Non-detection and/or filtering of 300 nm slow component
 - Filtering before 220 nm absorption an option
 - Large enough Stokes shift to jump over slow component
 - Nanoparticle type property?
 - Nanoparticle size effect?

BaF2 Crystal Readout – Mu2e Upgrade

Absorption, then Stokes shift over slow component to sensor no sensitivity for slow component!

Absorption/emission of candidate nanoparticle

Candidate nanoparticle for BaF2 Readout

10

Tests of selected nanoparticles

Tested a nanoparticle sample made at UTA by <u>mixing</u> nanoparticles in UV-transparent grease (DOW-Corning)

Compare blue, purple – it appears that passing through more nanoparticles helps – small reduction in the peak at 220 nm and a larger reduction in the signal > 245 nm.

-> determine the amount of nanoparticles in the grease by optimizing the 220/300 ratio for maximum rejection of light >250 nm.

-> Ratio of 220/300 for purple (thick) sample is ~2/1

A different nanoparticle candidate

UTA nanoparticles <u>deposited</u> <u>directly on the resin (face) of</u> <u>the SiPM</u>

Enhanced response of coated SiPM seen in the wavelength range from 200 nm – 240 nm compared to uncoated sensor

Without any optimization, ratio of coated to uncoated in the 200 – 240 nm range is ~factor of 10 greater than in the region > 250 nm!

-> We have tested at least 2 nanoparticle candidates which show sensitivity in the desired wavelength range and, in addition, much reduced sensitivity without the need for additional filters in the wavelength range > 250 nm

Size-dependent response - nanoplatelets

Alternative form for readout of crystal:

- Nanoplatelet (1-dimension smaller than λ_e) deposited on crystal surface
- Amplification of signal when lateral size increases (multiple signal response shows up at 0 ns time delay)
- Collaboration between CNM and ANLHEP (joint LDRD proposal submitted)

Work at ANL Center for Nanoscale Materials *Published: ACS Nano 2017, 11, 9119-9127*

Plans for BaF₂ 220 nm Readout

- Optimize thickness, nanoparticle concentration in DOW-Corning grease for best signal to noise (220 nm / 300 nm) ratio using monochromator
- Test this on a BaF₂ crystal with muons
- Find a binder that can contain nanoparticles at the optimal concentration and thickness that makes a *soft cookie for placement between a crystal and a sensor (SiPM)*
 - Siloxane epoxy (same properties as DOW-Corning grease?)
- Test nanoplatelet idea deposited on crystal surface
 - Direct conversion to electron signal photosensor unnecessary!
- Produce nanoparticle/sensor combination for Mu2e BaF₂ Calorimeter

Backup Slides

Nanoparticle-enhanced Night Vision

From ScienceDaily

Bats Scan The Rainforest With UV-Eyes

"Bats from Central and South America that live on nectar from flowers can see ultraviolet light (Nature, 9 October 2003)."

"There is little light at night. But compared to daylight, the colour spectrum is shifted towards short, UV-wavelengths."

"Interestingly, bats achieve an absorption efficiency in the UV bandwidth of nearly 50 percent of their photoreceptors major peak of absorbance (alpha-band). *This is nearly five times the value expected from in-vitro measurements of beta-band absorption in rhodopsin molecules.* Whether this indicates a *novel mechanism for light perception* in the bats eye that is still unkown for mammals remains open."

-> High efficiency for UV absorption is a characteristic of quantum confinement in nanoparticles – Bat eye rods are coated with nanoparticles!?

... and now Us!

UTA LaF3:Ce nanoparticles in transparent polycarbonate (contacts) Enhancement for 10% LaF3:Ce: —

230 nm < λ < 390 nm

... and Deer

Summary of Possible Applications

Detector	Application	Absorbed λ	Emitted λ	Candidate	Customer
Argon	Coating	128 nm	425 nm	LaYO, CdS	HEP (DUNE, SBN)
Xenon	Coating	178 nm	425 nm	LaYO, ?	HEP, NP (0vBB, Dark Matter)
Water	Coating	125 – 300 nm	425 nm	LaYO	HEP (ANNIE)
BaF2 crystal	Surface	200 – 250 nm	425 nm	ZnS:Mn#, CuCy#, ZnS:Mn,Eu#	HEP (Mu2e)
PbF2 crystal	Surface	200 – 400 nm	425 nm	Si*, LaF3:Ce#	HEP, NP (g-2, DRCal)
Fibers	Coating	300 – 390 nm	425 nm	LaF3:Ce#	Astrophysics (AAO, DES)
Plastic Lens	Infusion	300 – 400 nm	520 nm	LaF3:Ce#	Defense, Night Vision
Other crystals	Surface	Per crystal	425 nm	?	Nat. Sec., HEP, Medicine
Other nobles	Coating	Per element	425 nm	?	НЕР

Key: tested results, simulated results, ? (no ID'd candidate yet), * (published), # (pub pending)

Also : high efficiency solar cells, luminescent window glass