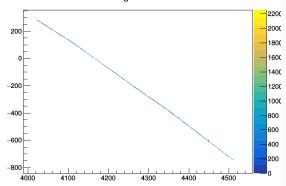
Far Detector Electron Lifetime Calibration Using Crossing Muons

Aidan Reynolds 17th July 2018

Motivation and Goals

- Tracks crossing both APA and CPA provide tracks with a measurable T0
- Hits from these tracks can be used to calibrate electron lifetime in the TPC due to the known drift time
- We'd like to understand how sensitive we can be to the lifetime using these tracks

Motivation


• Understand granularity possible in lifetime measurements based on realistic event selection purity and efficiency

Goal

 Develop lifetime measurement method based on hits collected from T0 tagged crossing tracks

MC Sample

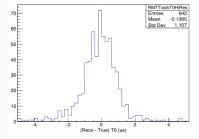
- An MCC9 cosmic ray sample, MUSUN, was used to study crossing track selection in the far detector
- The cosmics in this data are mostly very vertical so only 6% of all tracks cross an anode or cathode
- This sample is "cosmic triggered" so all tracks have a T0 of 0

crossing track all hits

Selecting Crossing Tracks in DUNE

In DUNE we can take advantage of a track stitching algorithm developed by Leigh Whitehead for ProtoDUNE to select crossing tracks

 https://indico.fnal.gov/event/13933/material/slides/0? contribId=2

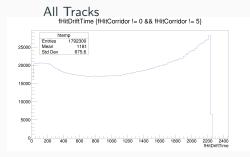

Tracks with start and end in different APA/CPA corridor selected and quality cuts applied, T0 has $O(\mu s)$ resolution from stitching algorithm

 https://indico.fnal.gov/event/14581/session/8/ contribution/161/material/slides/

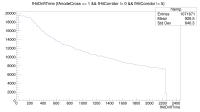
Note on MUSUN Sample

Cosmic triggered nature of MUSUN sample means few tracks are stitched due to small T0's

• Gaussian spread of $1\mu s$ applied to true T0's instead

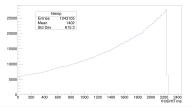

Selection Performance

- This event selection was tested on the MUSUN cosmic data sample and produced a sample of 3300 tracks
 - This is about 6% of all tracks
 - A crossing track is found in 1 out of 5 events.
- $\bullet\,$ This selection had purity 97% and efficiency 36%

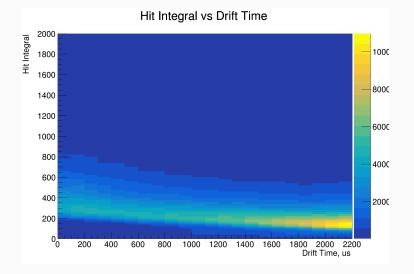

Number Events	17,800
Total Number of Tracks	142,447
True Crossing Tracks	8710
Selected before Angular Cut	3374
Selected before NHits Cut	3358
Selected Tracks	3301

- Electron lifetime measured from decay of charge deposition with drift distance
- Most Probable Value (MPV) is used due to large tails of distribution
- MPV taken from Landau-Gaussian Fits to charge distribution with drift time
 - recob::Hit::Integral() used for charge values
 - Charge distributions binned in $100 \mu s$ time bins
 - MPVs fitted around peaks of charge distributions

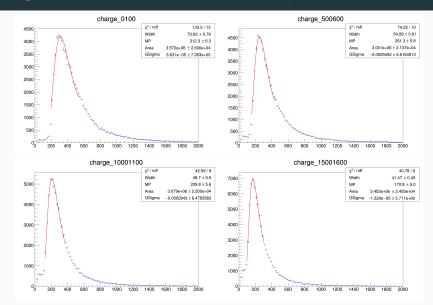
Drift Time Distributions



Anode Crossers



Cathode Crossers



Charge – Drift Time Distributions

8/12

Charge Distributions and MPV Fit Examples

Lifetime Estimation

Lifetime estimate from exponential fit to MPV vs Drift Time distribution Electron Attentuation vs Drift Time χ^2 / ndf 4.051 / 20 MPV of Charge Distribution Constant 5.779 ± 0.008 Slope -0.0003809 ± 0.0000068 Drift Time, us Prediction: $2.62 \pm 0.05 \ \mu s$ (stat only)

Simulation: $3\mu s$

- Not yet attempted to remove sources of high charge density
 - Delta rays, MCS
- Reduced lifetime estimate if selection favours cathode crossers
 - Muon energy loss as track approaches anode could mimic electron attenuation
- This study uses a sample of 3300 selected tracks over the full FD volume
 - Spatial granularity based on this sample will be minimal
 - To what level do we want to know electron lifetime in each spatial bin?

- Framework to understand lifetime calibration based on the minimal sample of T0 tagged tracks is in place
- \bullet Initial predictions show 10% discrepancy from simulated lifetime
 - Possible causes for investigation:
 - Delta rays and other large charge deposits along tracks
 - Anode vs Cathode selection bias (energy loss during traversal)
- Moving forward we wish to use this framework to understand the lifetime sensitivity over the whole far detector based on a minimal T0 tagged sample
 - Spatial granularity
 - Sensitivity with optical T0 tagging