ATLAS \(ttH \) measurements in \(H \rightarrow \gamma\gamma \) at \(\sqrt{s} = 13 \) TeV

Jennet Dickinson

USLUA Lightning Round

10/26/2018
Higgs production in pp collisions

- ttH production is a direct probe of the Higgs-top coupling
 - Indirect probes include gluon-gluon fusion production and $H \rightarrow \gamma \gamma$ decay loops
- Standard model σ_{ttH} is only 0.51 pb at 13 TeV
Why $H \rightarrow \gamma \gamma$?

😊 Con: low branching ratio = 0.227%

😊 Pro: manageable background
 – *Low rates* of photons compared to jets
 – *Smoothly falling background* $m_{\gamma \gamma}$ spectrum

😊 Pro: excellent photon energy resolution

😊 Pro: no ambiguity in the origin of final state particles
 – Photons from Higgs, all other objects from tops

😊 Pro: expect big gains with more data
Multivariate analysis

Multiple variables (four-vectors)

Single discriminant (BDT score)

Multiple categories with different S/B

BDT training using XGBoost

Categorization

Sensitivity evaluation

Signal: ttH(γγ) MC
Bkg: continuum diphoton

m_{γγ} spectrum of data in all categories
Multivariate analysis

- Define ttH categories with different S/B by slicing in BDT score
 - Tight BDT categories have lower statistics in data, but higher ttH purity and better S/B ratio

All-hadronic

1+ lepton
Sensitivity to $ttH(\rightarrow \gamma\gamma)$
with 79.8 fb$^{-1}$

- Perform a combined signal + background fit over all categories to the $m_{\gamma\gamma}$ distribution
- $H \rightarrow \gamma\gamma$ alone is **sensitive to ttH at the level of 4.1\sigma**
- **Statistics limited!**
 Expect further improvement with 2018 data
Top content
in ttH(→ γγ) categories

• Using a dedicated BDT algorithm, *reconstruct top candidates* from sets of three jets

• **Clear peak** in data at m_{top} in the ttH(→ γγ) categories!

• Fit data to decompose continuum diphoton background into 58% ttγγ and 32% γγ

$m_{\text{top}} = 173$ GeV
We combine the $ttH(\rightarrow \gamma\gamma)$ categories with other Higgs decay channels.

We observe ttH production with a combined significance of 6.3σ.

This is the first observation of direct Higgs-quark coupling!
Discovery of ttH

- We measure a 13 TeV ttH cross section of
 \[\sigma_{ttH} = 670 \pm 90 \text{ (stat)} \pm^{110}_{-100} \text{ (syst)} \text{ fb} \]

- Reasonable agreement with the SM prediction

- We look forward to probing this process further in the full Run-2 dataset!
Thank you!
Backup
Abstract

Higgs production in association with top quarks (ttH) is predicted by the Standard Model at a rate of about 1% of the total Higgs cross section. This process directly probes the Higgs-top coupling, a critical parameter for isolating Beyond the Standard Model contributions to Higgs physics. The ATLAS search for ttH events in conjunction with the decay $H \rightarrow \gamma\gamma$ takes advantage of the high photon detection efficiency and energy resolution of the ATLAS electro-magnetic calorimeter, as well as the relatively low rate of diphoton background processes. The application of sophisticated multivariate techniques to identify ttH $\rightarrow \gamma\gamma$ events improves the sensitivity to ttH compared to past analyses. In combination with other Higgs decay channels, ttH $\rightarrow \gamma\gamma$ contributed to the recent discovery of the ttH production mode.
References

• ATLAS publications

• Other
 – https://twiki.cern.ch/twiki/bin/view/%20LHCPhysics/LHCHXSWG#SM_Higgs
The ATLAS detector
Hadronic channel
BDT Training
in the hadronic channel

• Require ≥3 jets, ≥1 b-jet, 0 leptons
• Signal: ttH(γγ) MC
• Background: data control sample + ggH(γγ) MC
• Training variables:
 – Four momentum and b-tag score of up to six jets
 – Four momentum of the two photons, scaled by $m_{γγ}$ to prevent biasing the $m_{γγ}$ distribution
 – Missing E_T and angle of missing E_T
Category Definition in the hadronic channel

- Define four hadronic ttH categories with different S/B by slicing in BDT score
 - Reject events with BDT score < 0.91

- Tight BDT categories have lower statistics, but higher ttH purity and better S/B ratio
 - These are the most powerful categories
Hadronic channel
BDT category 4 (loosest)

Expected ttH yield:
3.00

S/B: 0.05

ttH purity (n_{ttH}/n_{Higgs}):
48%

Background shape:
Power law

Mass resolution:
1.63 GeV

S/B and purity calculated in the smallest window containing 90% of ttH
Hadronic channel
BDT category 3

Expected ttH yield: 4.7

S/B: 0.13

ttH purity (n_{ttH}/n_{Higgs}): 70%

Background shape: Power law

Mass resolution: 1.59 GeV

S/B and purity calculated in the smallest window containing 90% of ttH
Hadronic channel

BDT category 2

Expected ttH yield: 3.41

S/B: 0.42

ttH purity (n_{ttH}/n_{Higgs}): 83%

Background shape: Exponential

Mass resolution: 1.46 GeV

S/B and purity calculated in the smallest window containing 90% of ttH
Hadronic channel
BDT category 1 (tightest)

Expected ttH yield:
4.20

S/B: 1.87

ttH purity (n_{ttH}/n_{Higgs}):
90%

Background shape:
Power law

Mass resolution:
1.32 GeV

S/B and purity calculated in the smallest window containing 90% of ttH
Leptonic channel
BDT Training in the leptonic channel

• Require ≥3 jets, ≥1 b-jet, 0 leptons
• Signal: ttH(γγ) MC
• Background: data control sample
• Training variables:
 – Four momentum and b-tag score of up to six jets
 – Four momentum of the two photons, scaled by $m_{γγ}$ to prevent biasing the $m_{γγ}$ distribution
 – Four momentum of up to two leptons
 – Missing E_T and angle of missing E_T
Category Definition in the leptonic channel

- Define three leptonic ttH categories with different S/B by slicing in BDT score
 - Reject events with BDT score < 0.70

- Again, tightest BDT category is the most powerful due to high S/B

- Statistics in the leptonic channel are lower
 - Branching ratio of W to $e\nu$ or $\mu\nu$ is only 21.3%
Leptonic channel
BDT category 3 (loosest)

Expected ttH yield:
0.82

S/B: 0.17

ttH purity (n_{ttH}/n_{Higgs}):
73%

Background shape:
Exponential

Mass resolution:
1.73 GeV

S/B and purity calculated in the smallest window containing 90% of ttH
Leptonic channel
BDT category 2

Expected ttH yield: 2.23

S/B: 0.46

ttH purity (n_{ttH}/n_{Higgs}): 89%

Background shape:
Power law

Mass resolution:
1.68 GeV

S/B and purity calculated in the smallest window containing 90% of ttH
Leptonic channel
BDT category 1 (tightest)

Expected \ttH yield: 4.50

S/B: 1.84

ttH purity ($n_{\ttH}/n_{\text{Higgs}}$): 95%

Background shape: Power law

Mass resolution: 1.45 GeV

S/B and purity calculated in the smallest window containing 90% of \ttH
Systematics on the combined cross section measurement

<table>
<thead>
<tr>
<th>Uncertainty source</th>
<th>$\Delta \sigma_{t\bar{t}H}/\sigma_{t\bar{t}H}$ [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory uncertainties (modelling)</td>
<td>11.9</td>
</tr>
<tr>
<td>$t\bar{t}$ + heavy flavour</td>
<td>9.9</td>
</tr>
<tr>
<td>$t\bar{t}H$</td>
<td>6.0</td>
</tr>
<tr>
<td>Non-$t\bar{t}H$ Higgs boson production modes</td>
<td>1.5</td>
</tr>
<tr>
<td>Other background processes</td>
<td>2.2</td>
</tr>
<tr>
<td>Experimental uncertainties</td>
<td>9.3</td>
</tr>
<tr>
<td>Fake leptons</td>
<td>5.2</td>
</tr>
<tr>
<td>Jets, E_{T}^{miss}</td>
<td>4.9</td>
</tr>
<tr>
<td>Electrons, photons</td>
<td>3.2</td>
</tr>
<tr>
<td>Luminosity</td>
<td>3.0</td>
</tr>
<tr>
<td>τ-lepton</td>
<td>2.5</td>
</tr>
<tr>
<td>Flavour tagging</td>
<td>1.8</td>
</tr>
<tr>
<td>MC statistical uncertainties</td>
<td>4.4</td>
</tr>
</tbody>
</table>