pyhf: pure-Python implementation of HistFactory with autograd

Matthew Feickert
matthew.feickert@cern.ch

2018 US LHC Users Association Meeting Lightning Round

October 26th, 2018
Collaborators

Lukas Heinrich
NYU

Giordon Stark
UCSC SCIPP

Kyle Cranmer
NYU
HistFactory

- A flexible p.d.f. template to build statistical models from binned distributions and data
- Developed by Cranmer, Lewis, Moneta, Shibata, and Verkerke [1]
- Widely used by the HEP community for standard model measurements and BSM searches
HistFactory Template

\[P(n_c, x_e, a_p|\phi_p, \alpha_p, \gamma_b) = \prod_{c \in \text{channels}} \left[\text{Pois}(n_c|\nu_c) \prod_{e=1}^{n_c} f_c(x_e|\vec{\alpha}) \right] G(L_0|\lambda, \Delta_L) \prod_{p \in S+\Gamma} f_p(a_p|\alpha_p) \]

This is a **mathematical representation**! Nowhere is any software spec defined.

Until now, the only implementation of HistFactory has been in RooStats+RooFit.

- To start using HistFactory p.d.f.s first have to learn ROOT, RooFit, RooStats
 - Problem for our theory colleagues (generally don't want to)
- Possible issues with scaling I/O and memory for large models
 - Not multithreaded
- Likelihood stored in the binary ROOT format
 - Challenge for long-term preservation (i.e. HEPData)
 - Why is a histogram needed for an array of numbers?
pyhf: HistFactory in pure Python

- First non-ROOT implementation of the HistFactory p.d.f. template
 - pure-Python library
 - `pip install pyhf[tensorflow]`
- Alternative choice to ROOT-based HistFactory to use in the analysis pipeline of HistFitter + HistFactory + RooStats
 - Not a replacement for HistFitter or RooStats
- Open source tool for all of HEP
 - Originated from a DIANA/HEP project fellowship
 - Dev team are on ATLAS and have contributions from CMS members and strong interest by theorists
 - Has already been used for reinterpretation in phenomenology paper (now on arXiv) [2]

In [109]. To compute the CL$_s$ values, the Python-based implementation of HistFactory [110] pyhf was applied [111].
HistFactory in ROOT Environment

HistFitter
build histos from trees

HistFactory
build L’hood/pdf

HistFactory spec + data
- XML
- file1.root
- XML
- file2.root
- XML
- file3.root

Likelihood (RooFit Workspace)

plot
- Observed CLs
- Observed CLs with nuisance
- Expected CLs
- Expected CLs + 1sigma
- Expected CLs + 2sigma

interval estimation

data

signal

backgrounds

+ variation histos

Image credit: Lukas Heinrich
HistFactory with \texttt{pyhf}
What does pyhf provide?

1. **Standalone pure-Python HistFactory implementation** including hooks into modern deep-learning, autodifferentiable tensor libraries
 - No ROOT dependency required at all!

2. **Pure JSON schema** to distribute and archive HistFactory models ingredients without any reliance on binary formats

3. **Consistent results** with ROOT
Easy to use Pythonic API

- Easy to use alternative implementation for non-ROOT software stack brings the useful HistFactory template to all of HEP

Hello World, pyhf style:

- Two bin counting experiment with a background uncertainty

```python
>>> import pyhf
>>> import pyhf.simplemodels
>>> import pyhf.utils

>>> pdf = pyhf.simplemodels.hepdata_like(
...     signal_data=[12.0, 11.0], bkg_data=[50.0, 52.0], bkg_uncerts=[3.0, 7.0])
>>> CLs_obs, CLs_exp = pyhf.utils.hypotest(
...     1.0, [51, 48] + pdf.config.auxdata, pdf, return_expected=True)
>>> print('Observed: {}, Expected: {}' .format(CLs_obs, CLs_exp))
Observed: [0.05290116], Expected: [0.06445521]
```
Open industry standard file formats

JSON defining a single channel, two bin counting experiment with systematics

```json
{
    "channels": [{
        "name": "singlechannel",
        "samples": [{
            "name": "sig",
            "data": [12.0, 11.0],
            "modifiers": [{ "name": "mu", "data": null, "type": "normfactor" }]
        },
        {
            "name": "bkg",
            "data": [50.0, 52.0],
            "modifiers": [{ "name": "uncorr_bkguncrt", "data": [3.0, 7.0], "type": "shapesys" }]
        }
    },
    "data": {
        "singlechannel": [51.0, 48.0]
    },
    "toptlv": {
        "measurements": [{
            "config": { "poi": "mu" },
            "name": "singlechannel"
        }]
    }
}
```
Machine Learning Frameworks for Computational Backends

- All numerical operations implemented in tensor backends through an API of n-dimensional array operations

- Using deep learning frameworks as computational backends allows for exploitation of auto differentiation (autograd) and GPU acceleration

- As huge buy in from industry we benefit for free as these frameworks are continually improved by professional software engineers
Automatic differentiation

With ML backends gain access to exact (higher order) derivatives — accuracy is only limited by floating point precision

\[
\frac{\partial L}{\partial \mu}, \frac{\partial L}{\partial \theta_i}
\]

Gain this through the frameworks creating directed computational directed acyclic graphs and then applying the chain rule (to the operations)
Preliminary Benchmarking

<table>
<thead>
<tr>
<th>Fit Benchmark</th>
<th>pyhf</th>
<th>C++ ROOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Old) Single Channel</td>
<td>Faster</td>
<td></td>
</tr>
<tr>
<td>(Old) Multichannel</td>
<td></td>
<td>Faster</td>
</tr>
<tr>
<td>(New) Single Channel</td>
<td>Faster</td>
<td>100X old</td>
</tr>
<tr>
<td>(New) Multichannel</td>
<td>Faster</td>
<td></td>
</tr>
</tbody>
</table>

GPU Acceleration: First GPU and TPU results running on Google Colab show order of magnitude speedup for large models.

Single channel fit with n bins (uncorrelated nuisance parameters).
Open Development

- Openly developed on GitHub
- User base growing and looking to use in Run2 analysis papers!
- Contributions welcome!
 - Just a PR away

pure-python implementation of some (maybe someday all?) HistFactory models http://diana-hep.github.io/pyhf
Summary

- Developed and continuing to improve the first non-ROOT implementation of the HistFactory p.d.f. template in pure Python
 - Simple but powerful Pythonic API
 - **Large speedup** over ROOT coming from vectorization and deep learning framework computational backends
- Enabling fast and flexible analysis
 - Excited users wanting to use for LHC Run2 papers
- **JSON specification ideal for preservation and reinterpretation**
 - Fully describe model with single simple text based (versionable) file
 - Robust **long long term support**
- Openly developed on GitHub
Backup
HistFactory Template

\[\mathcal{P} (n_c, x_e, a_p | \phi_p, \alpha_p, \gamma_b) = \prod_{c \in \text{channels}} \left[\text{Pois} (n_c | \nu_c) \prod_{e=1}^{n_c} f_e (x_e | \vec{\alpha}) \right] G (L_0 | \lambda, \Delta_L) \prod_{p \in S+\Gamma} f_p (a_p | \alpha_p) \]

Use: Multiple disjoint channels (or regions) of binned distributions with multiple samples contributing to each with additional (possibly shared) systematics between sample estimates

Main pieces:

- Poisson p.d.f. for bins observed in all channels
- Constraint p.d.f. (+ data) for "auxiliary measurements"
 - encoding systematic uncertainties (normalization, shape, etc)
Additionally allows for interactive visualization
Enough talk...live demo time!

Just click the button!
Example using `pyhf CLI`

JSON defining a single channel, two bin counting experiment with systematics

```json
{
  "channels": [
    {
      "name": "singlechannel",
      "samples": [
        {
          "name": "sig",
          "data": [12.0, 11.0],
          "modifiers": [{ "name": "mu", "data": null, "type": "normfactor" }]
        },
        {
          "name": "bkg",
          "data": [50.0, 52.0],
          "modifiers": [{ "name": "uncorr_bkguncrt", "data": [3.0, 7.0], "type": "shapesys" }]
        }
      ]
    }
  ],
  "data": {
    "singlechannel": [51.0, 48.0]
  },
  "toplvl": {
    "measurements": [
      { "config": { "poi": "mu" },
        "name": "singlechannel"
      }
    ]
  }
}
```
Example using `pyhf` CLI

$ pyhf cls demo.json
{
 "CLs_exp": [
 0.002606408505279359,
 0.013820656047622592,
 0.0644552079856191,
 0.23526102499555396,
 0.573041803728844
],
 "CLs_obs": 0.05290116065118097
}
$ CL_s \text{ with Reinterpretation}$

Original

$$\begin{align*}
\text{pyhf cls demo.json | jq .CLs_obs} \\
0.05290116065118097
\end{align*}$$

Consider a new signal to test

```
# new_signal.json
[
    {
        "op": "replace",
        "path": "/channels/0/samples/0/data",
        "value": [5.0, 6.0]
    }
]
```

Apply the patch with the new signal to update the likelihood: \(L \rightarrow L' \)

$$\begin{align*}
\text{pyhf cls demo.json --patch new_signal.json | jq .CLs_obs} \\
0.3401578753020146
\end{align*}$$
JSON for Statistical Models

- Long term support for non-binary format (think preservation)
 - HEPData now based on JSON schema
- Language agnostic
 - Reimplement likelihood in a new language more easily (c.f. pyhf)
 - JSON contains information to build the HistFactory likelihood
- Human and machine readable
- Offer auto-generation support from existing XML+ROOT configuration

 \$ pyhf xml2json /path/to/config.xml > hf.json
- Much smaller size for archiving
 - Realistic Example: ATLAS multi b-jet analysis workspace

<table>
<thead>
<tr>
<th>pyhf JSON schema</th>
<th>ROOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>744K mbj.json</td>
<td>260K config</td>
</tr>
<tr>
<td>32K mbj.json.gz</td>
<td>7.5M data</td>
</tr>
<tr>
<td></td>
<td>1.5M results/workspace.root</td>
</tr>
</tbody>
</table>
Realistic Example Use Case

CPU NumPy backend of `pyhf` vs. ROOT HistFactory on ATLAS multi b-jet Analysis

- multi b-jet HistFitter configuration has 23 Channels

```
$ time pyhf cls mbj.json | jq .CLs_obs
0.2614638795780821

16.32s user 0.93s system 95% cpu 18.152 total
```

```
$ time root_cls.py atlas-conf-2018-041/workspace.root | jq .CLs_obs
0.25606989834647437

40.01s user 1.38s system 86% cpu 47.978 total
```
Preliminary Benchmarking

- Changing with many updates
- For a single channel with n nuisance parameters already seeing performance boosts
- For many channels ROOT was faster. With latest PRs `pyhf` now faster than ROOT in all cases.
- Needs to be revisited with recent updates that properly implement vectorization and graph structure
 - Seeing over a $100x$ speedup to that seen in image
- Still need to finish benchmarking on GPUs
 - Already see a $10x$ speedup

old benchmark: Single channel fit with n bins (uncorrelated nuisance parameters) with CPU backends. Lower is better.
in which \(p(q_\mu | \mu') \) is the distribution of the test statistic \(q_\mu \) for data, which is populated according to a signal strength \(\mu' \) which we compute using the asymptotic formulae derived in [109]. To compute the CL_{s} values, the Python-based implementation of HistFactory [110] pyhf was applied [111].
Will `pyhf` extend to unbinned models?

- The project scope is to implement HistFactory as best as possible. While implementing unbinned models is not an impossibility, it is not in the project goals at the current time.
- There are already projects like GooFit, which nicely handle unbinned models.
- While contributions are welcome, it might be worth starting a different project or contributing to projects already focused on unbinned models.
The JSON has both the modifiers and the data. Is this a good idea?

- The `pyhf` dev team views this as a good feature, not a bug.
- However, the `pyhf` dev team is considering using parts of `histbook` in the future, leading to some separation.

DOI 10.5281/zenodo.1321926
References

The end.