Measurement of Higgs bosons decaying to Tau lepton pairs and Constraints on Anomalous HVV couplings.

Sam Higginbotham
The Higgs Boson and Taus

- Tau Identification:
 - Tau Decays \textit{hadronically} (τ_h) and \textit{leptonically}
 - Hadron Plus Strips to identify π’s in τ_h decays

- Use taus to investigate properties of the Higgs:
 - Good Branching Fractions
 - Excellent online selection
 - Higgs couples to mass. Tau is the most massive lepton
Signals and Final States

- Production Mechanisms:
 - Vector Boson Fusion (VBF)
 - Gluon Gluon Fusion (ggH)

- Final States

\[\tau_h \tau_h, e\tau_h, \mu\tau_h, e\mu \]

- Main Backgrounds:
 - QCD background
 - Drell – Yan
 - \(t\bar{t} \)

- Challenges:
 - Jets faking taus
 - Leptons faking taus
Event Categorization and Fit Model

• 3 Event Categorizations:
 • For a final fit, most categories and channel use a **2D fit** in the limits to extract **significance for the mass of the \(\tau \tau \) system**
 • **0-jet category** is used to constrain backgrounds, VBF and Boosted for signal extraction
 • Shown below is the 0-jet category for each channel

<table>
<thead>
<tr>
<th>Categorization</th>
<th>(\tau_h \tau_h)</th>
<th>(\mu \tau_h)</th>
<th>(e \tau_h)</th>
<th>(e \mu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - Jet</td>
<td>(m_{\tau \tau})</td>
<td>(m_{vis} : \tau_{DM})</td>
<td>(m_{vis} : \tau_{DM})</td>
<td>(m_{vis} : \mu_{pt})</td>
</tr>
</tbody>
</table>

• 0-jet criteria: no jet > 30 GeV, \(|\eta| < 4.7\), and loose particle flow I.D.

\(e \mu \) and \(\tau_h \tau_h \) don’t resonate sharply around \(Z \) ... for \(\tau_h \tau_h \) 1D is used for high \(pt \) threshold

0jet has better separation in visible mass
Background Methods

- Several Control Regions (CR) are used to measure background for W+Jets, Z+Jets, $tt\bar{t}$, and QCD.

$$QCD = O.S. \ \text{Loose Iso.} \times \left(\frac{S.S. \ \text{Sig. Iso.}}{S.S. \ \text{Loose Iso.}} \right)$$

- QCD yield estimated in sideband region.

- $m_{\tau\tau}$ in the 0 jet category shows QCD dominance.
Unrolled Distributions $m_{\tau\tau}:m_{jj}$

- 2D categories are **split** and **unrolled**, VBF category in the $\mu\tau_h$ channel shown

- The Z and Higgs are well **separated** with the Z at 90 GeV and Higgs at 125 GeV
Unrolled Distributions $m_{\tau\tau}:m_{jj}$
Unrolled Distributions $m_{\tau\tau}:m_{jj}$

- 2D categories are split and unrolled, shown below.
- The Z and Higgs are well separated in the CMS distribution, with the Z at 90 GeV and Higgs at 125 GeV.
The $S/(S+B)$ weighted distribution is shown on the right.

- p-value scan shows 5σ sensitivity.
Performance of 2D Fit

- The $S/(S+B)$ weighted distribution is shown on the right.
- p-value scan shows 5σ sensitivity.
Using MELA in $H \rightarrow \tau \tau$

- Matrix Element Likelihood Analysis (MELA) can be used to constrain couplings in HVV processes such as Higgs coupling to ZZ, WW, Z\gamma, γγ, and gg:

 - Build discriminant with MELA to make an optimal observable

 $$ D_{0-} = \frac{P_{0-}}{P_{0+} + P_{0-}} $$

- For the future, use discriminant in conjunction with Machine Learning for 2D or 3D fit!
Future Studies

- We may use **Machine Learning** and **MELA** in the final 2D or 3D fit.

- R.O.C. Curve with BDTs trained in VBF category

- \(M_{sv} \) shown after preliminary BDT cut in Boosted Category
References

• CMS Detector Public Page: [Link]
• HIG-17-011 Observation of the SM scalar boson decaying to a pair of tau leptons with the CMS experiment at the LHC, CMS PAS HIG-16-043 [Link]
• Constraints on anomalous Higgs boson couplings using production and decay information in the four-lepton final state, HIG-17-011 [Link]
• Constraints on anomalous HVV couplings in production of Higgs bosons decaying to tau lepton pairs, CMS CADI HIG-17-034
Thank you
Backup
Full Event Categorization and Fit Model

- 3 Event Categorizations:
 - For a final fit most categories and channel use a 2D fit in the limits to extract significance for the mass of the $\tau\tau$ system

<table>
<thead>
<tr>
<th>Categorization</th>
<th>$\tau\tau$</th>
<th>$\mu\tau$</th>
<th>$e\tau$</th>
<th>$e\mu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - Jet</td>
<td>$m_{\tau\tau}$</td>
<td>$m_{\text{vis}}:\tau_{\text{DM}}$</td>
<td>$m_{\text{vis}}:\tau_{\text{DM}}$</td>
<td>$m_{\text{vis}}:\mu_{\text{pt}}$</td>
</tr>
<tr>
<td>Boosted</td>
<td>$m_{\tau\tau}:\text{Higgs}_{\text{pt}}$</td>
<td>$m_{\tau\tau}:\text{Higgs}_{\text{pt}}$</td>
<td>$m_{\tau\tau}:\text{Higgs}_{\text{pt}}$</td>
<td>$m_{\tau\tau}:\text{Higgs}_{\text{pt}}$</td>
</tr>
<tr>
<td>VBF</td>
<td>$m_{\tau\tau}:m_{jj}$</td>
<td>$m_{\tau\tau}:m_{jj}$</td>
<td>$m_{\tau\tau}:m_{jj}$</td>
<td>$m_{\tau\tau}:m_{jj}$</td>
</tr>
</tbody>
</table>

- $m_{\tau\tau}$ is precisely measured using SV-Fit

98% ggH signal, $e\mu$ and $\tau\tau$ don’t resonate sharply around Z ... for $\tau\tau$ 1D is used for high pt threshold

0 jet has better separation in visible mass. Low DY lepton faking tau in 3-prong DM.