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Radiotherapy with carbon ion beams has become a popular topic throughout the world, due
to its desirable features including sharp Bragg peak and greater radio-biological effectiveness. the
Argonne National Laboratory recently embarks on developing the Advanced Compact Carbon Ion
Linac, a linear accelerator designed for performing carbon therapy. The work presented here focuses
on the coupled cavity linac (CCL) of ACCIL, which is crucial for its compactness. In this project,
we designed the CCL based on the annular coupled structure and successfully optimized the cavity
frequency and field distribution. We also studied the sensitivity of the cavity to machining errors and
the tuning capabilities of tuners installed on the accelerating cells. Lastly, we applied the coupled
resonator model to describe our accelerating cavity.

I. INTRODUCTION

Recently, there is a strong interest worldwide in
using carbon ion beams for radiotherapy [1]. Car-
bon ion beams have a sharp Bragg peak (Figure 1),
which is desirable for more localized cancer treat-
ment and reduced toxicity to healthy cells. Car-
bon ion beams also have a greater radio-biological
effectiveness (RBE), allowing the treatment of more
’radio-resistant’ tumors. [2]

FIG. 1. Comparison of the energy deposition as a func-
tion of depths for x-rays, proton beams and carbon ion
beams.

On the other hand, existing carbon therapy facil-
ities around the world are all based on synchrotron
technologies, which are less suitable for deliver-
ing high quality beams with variable energies and
more space-consuming compared to linear accelera-
tors (linacs) [3]. Therefore, Argonne National Labo-
ratory embarks on the development of a linac-based
carbon ion therapy facility, known as the Advanced
Compact Carbon Ion Linac (ACCIL) (Figure 2)

To make ACCIL compact, a high gradient needs

FIG. 2. Schematic diagram of the different sections of
ACCIL

to be achieved in the last part of the accelerator, i.e.,
the coupled cavity linac (CCL). Several accelerating
structures have been proposed [2], one of them be-
ing the annular coupled structure (ACS) (Figure 3),
a standing wave π/2-mode accelerating cavity struc-
ture.An advantage of ACS is that it is relatively com-
pact by design, as the coupling cells are placed off-
axis thus do not increase the length of the cavity. It
is also robust to small manufacturing imperfections,
as the operating mode is the π/2-mode instead of
the π-mode [4].

FIG. 3. 3D model of the ACS cavity consisting of 15
accelerating cells and 14 coupling cells.

In this project, we designed a 15-cell accelerat-
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ing cavity based on an existing ACS structure and
optimized it to the desired frequency of 2856 MHz
and a flat electric field distribution along the cen-
tral axis where the beam passes through. We also
studied the effect on the frequency and field flatness
caused by small errors in the geometry of the cavity
and the tuning capabilities of the tuners installed on
the accelerating cells. The commercial software CST
Microwave Studio is used extensively to obtain the
mode frequencies and field distributions. Finally, we
attempted to use a theoretical model, the coupled
resonator model, to describe our cavity.

II. OPTIMIZATION

The optimization phase entails two main aspects,
namely the resonant frequency and the field distri-
bution. We also present some selected design and
radio-frequency (RF) parameters of the optimized
final structure.

A. Frequency

We started from the ACS structure in the J-PARC
project in Japan, which is designed for a lower fre-
quency of 972 MHz [5]. To bring the frequency to
2856 MHz, we varied the cell radius. This is because
the electromagnetic mode in every accelerating cell
is TM01 [4], and the frequency of this mode for an
equivalent pillbox cavity is given by

f0 = 2.405 × c

2πR
(1)

where R is the cell radius [4]. With numerical sim-
ulations conducted in CST Studio, we obtained the
optimum cell radius R = 38.853 mm.

FIG. 4. Electric [(a) left view] and magnetic [(b) front
view] field in an accelerating cell, showing that the EM
mode in each cell is TM01. The 4 coupling windows
(located on the x- and y-axes in our coordinate system)
break the axial symmetry of the magnetic field.

B. Field Flatness

As the cavity is not infinitely periodic, the electric
field distribution is not uniform when all the acceler-
ating cells have the same geometry. To obtain a flat
field while not complicating the manufacturing pro-
cess too much, we kept the geometry of the middle
cells the same while only varying a few parameters
of the two end cells.

Through literature review and numerical simula-
tions with CST, we found that the cell gap and cou-
pling window length are good parameters to tune for
a uniformly distributed field [6].

The optimum combination of these parameters is:
cell gap = 0.4096 × drift tube length, and coupling
window length = 28.17 mm (Figure 5 (a)).Compared
to the middle cells, the percentage differences in
these parameters are -18.08% and +1.514% respec-
tively. This gives us a very flat field, as seen in
(Figure 5 (b)) where the magnitude of the peaks of
Ez in all cells have very close values.

FIG. 5. Plot of Ez(z) in the structure (a) and along the
central axis of the cavity (b)

To quantify the field flatness, we define the vari-
ance of the peak Ez-field between cells (Epeak) to
be

σ2 =

15∑
n=1

(
Epeak − Ēpeak

Ēpeak
) (2)

In the case of the ideal geometry, the value is cal-
culated to be σ2 = 4.1060 × 10−4
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C. Radio-Frequency Parameters

Some common RF parameters are shown in the
table below (Figure 6).

FIG. 6. Selected RF parameters of the optimized accel-
erating cavity

III. SENSITIVITY AND TUNING

As real-life machining is never exact, we want to
look into how imperfections in the cell geometry af-
fects the frequency and field distribution in the cav-
ity, and whether we can bring them back to near-
ideal with tuners installed on the accelerating cells.

A. Sensitivity Analysis

Assuming a machining precision of ±25µm [7], we
studied the effect of errors in the radius of accelerat-
ing cells on the resonant frequency (Figure 7 (a)) and
field flatness in the cavity (Figure 7 (b) (c)). From
these plots of response functions, we can see that
an increased radius in any accelerating cell causes
the frequency of the cavity to increase, and vice
versa.This is expected from the dependence of the
TM01 mode frequency expression. Therefore, the
maximum frequency variation occurs when all cells
have the maximum error in the same direction, thus
giving us a frequency range of 2854.09 MHz (when
the errors on all cells are +25 µm) to 2857.88 MHz
(when the errors on all cells are -25 µm).

As for the field distribution, an increase in cell ra-
dius concentrates the electric field. The color plot
shows that an increase in the radius of the middle
few cells (cell 7 - 9) only causes a slight increase in
the electric field, which is largely confined to a re-
gion near itself, while an error in cells near the ends
results in a greater change in the electric field dis-
tribution and creates a field gradient in the entire
cavity, causing an opposite change in the field dis-
tribution on the other side of the cavity.

FIG. 7. Plot of responses of resonant frequencies and
electric field distributions in the presence of geometry
errors in the accelerating cells. (a) Resonant frequencies
when the radius of each cell is given an error of ±25µm.
(b) Field distribution response when there is a +25µm
error in a cell (vertical-axis). Color represents the frac-
tional change in peak Ez in each cell (horizontal axis).
For example, the pixel in row 1 column 2 represents the
fractional change in peak Ez in cell 2 when there is a
+25µm error in cell 1. (c) Same as (b) except the error
in cell radius is −25µm.

B. Tuning Capabilities

To ensure that the above-mentioned perturbations
in frequency and field flatness can be corrected even
after the cavity is built, tuners need to be installed
on the accelerating cells. Here, for simplicity, we
model the tuners as small cylinders that create dents
or bumps on the accelerating cells. These tuners
are placed 45◦ from the coupling windows, as these
are the positions where the magnetic field is the
strongest, thus can cause the greatest change in the
cavity frequency and field distribution (Figure 8).

FIG. 8. Models of tuners pushing in (left) and pulling out
(right) on the accelerating cell wall, and the associated
magnetic field in the cell.

We first simulated with two tuners on each cell,
which each have a radius of 3.2 mm and a maximum
tuning depth of 2 mm in both in and out directions.
The tuning range with two tuners is from 2855.03
MHz (when all tuners are pulled out by 2 mm) to
2859.47 MHz (when all tuners are pushed in by 2
mm).

To give the tuners a sufficient tuning range to cor-
rect the frequency perturbations, 4 tuner need be
installed on each cell. We again found the response
functions for the tuning effect on each cell (Figure



4

9). This gives a tuning range of 2853.85 MHz to
2863.11 MHz, which is sufficient for our purpose.

FIG. 9. Plot of responses of resonant frequencies and
electric field distributions when pushing or pulling 4
tuners installed on each accelerating cell. The interpreta-
tion is similar to Figure 7. Note that the colorbar range
is doubled compared to previous plots to show the full
range.

Note that the decrease in frequency when tuners
are pulled out is significantly less than the increase in
frequency when the tuners are pushed in. This might
be a limitation of our modeling, as a cylindrical hole
on the accelerating cells perturbs the magnetic field
less than the mechanical distortion on the shape of
the cell created by an actual tuner. More realistic
mechanical simulation on tuner distortions on the
shape of the cells could be done in the future.

C. Optimization of A Cavity with Random
Errors in Cell Radii

To demonstrate that the tuners are indeed capable
of correcting the frequency and field distribution, we
modeled a 15-cell cavity with a random error in radii
on each cell in the range of [−25,+25]µm, generated
by MATLAB (Figure 11). This gives a perturbed
frequency of 2855.485 MHz and a large field variance
of 0.2014 (Figure 10, blue curve)

FIG. 10. Electric field distribution for the structure,
with random errors in cell radius (blue curve), and after
tuning (orange curve).

We then adjusted the tuners on a few cells to get
back a frequency of 2856.00 MHz and a reasonably

flat field distribution. (Figure 10, orange curve) The
configuration of the tuners is given in (Figure 11).

FIG. 11. Random error on cell radii and tuner configu-
ration that tunes the randomly perturbed cavity back to
the desired frequency and flat field.

The tuning is partly based on response functions
we obtained in the previous section, but the process
is far from systematic. A future projects could look
into developing a detailed and more systematic tun-
ing algorithm based on the perturbed frequency and
field distribution, as well as the response functions.

IV. COUPLED RESONATOR MODEL

A useful model to describe an accelerating cavity
consisting of a chain of periodic cells is the coupled
resonator model [8].

FIG. 12. Analogy among coupled cavities, coupled cir-
cuits and linear lattice. Figure from [4]
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As each cell has its resistance, inductance and ca-
pacitance, we can draw a parallel between an accel-
erating cavity and a chain of RLC circuits (Figure
12), taking into account the parameters including
individual cell resonant frequency f0, quality factor
Q, and coupling coefficient k between adjacent cells
[8] .

In our case, as the accelerating and coupling cells
have very different geometries, the chain of resonator
is biperiodic instead of simply periodic, thus we need
to consider the frequencies of both types of cells.
Since there is also non-trivial second nearest cell
coupling, between accelerating and coupling cells re-
spectively, two additional parameters need be in-
cluded into the model. Besides, as the simulation is
done under the PEC assumption, the quality factor
Q is very large, thus the terms involving 1

Q can be

safely ignored. Therefore, we have to define 5 param-
eters to describe the system, namely the accelerating
and coupling cell resonant frequencies fa, fc, nearest
neighbor coupling coefficient k1, and second nearest
neighbor coupling coefficients ka, kc, between accel-
erating cells and coupling cells respectively. This
gives us an expression for the dispersion relation [8]:

k21 cos2 φ = (1 − f2a
f2

+ ka cos 2φ)(1 − f2c
f2

+ kc cos 2φ)

(3)

where φ = πq
2N , q = 0, 1, 2, ...2N and N being the

total number of unit cells, which is equivalent to the
total number of accelerating cells (the two half-cells
at the ends count as one full accelerating cell).

The five parameters can be obtained by perform-
ing two parametric studies with a ’unit cell’ of the
structure consisting of a full coupling cell sand-
wiched between two half-accelerating cells with PEC
termination (Figure 13 (a)). Similar to that in [9]
and [10], varied fa by changing the accelerating cell
radius (Figure 13 (b)), and varied fc by changing the
height of the coupling cell gap (Figure. 13 (c)), and
obtained the frequencies of the three relevant modes
with simulations in CST Studio. By plotting the
quantities x = F−2

− +F−2
+ against y = (F−2

− −F−2
+ )2,

we can obtain ymin and the associated x value xmin.
These quantities, together with the π/2 mode fre-
quency, can give us a system of 6 equations, which
can be used to solve for the 5 unknown parameters
stated above.

1

F 2
0

=
1 − ka
f2a

(4)

f̃a
−2

=
1

2
(ymin + x2min)/xmin (5)

k21 =
1

2
(1 + kc)fa

ymin
xmin

(6)

1

F 2
0

=
1 − kc
f2c

(7)

f̃c
−2

=
1

2
(ymin + x2min)/xmin (8)

k21 =
1

2
(1 + ka)fc

ymin
xmin

(9)

where f̃a
2

=
f2
a

1+ka
, and f̃c

2
=

f2
c

1+kc
.

Solving the above system of equations gives

fa = 2871.29

fc = 2834.88

ka = −0.01074

kc = 0.01473

k1 = (0.06611 + 0.06138)/2

= 0.06374

where k1 is obtained in two ways so the average
of the two results is taken.

FIG. 13. (a) The unit cell structure used for the para-
metric study, consisting of a full coupling cell sand-
wiched between two half-accelerating cells with PEC
termination. (b) (c) Plots of x = F−2

− + F−2
+ against

y = (F−2
− − F−2

+ )2, as defined in the parametric stud-
ies. For (b), the radius of the accelerating cell (b) is
varied from 35 mm to 43 mm. For (c), the height of the
coupling cell gap (c) is varied from 5 mm to 9 mm.

Using the above parameters, we compared the cal-
culated and simulated dispersion relations for the
half-cell termination structures for N = 1, 2, ...5
(Figure 14 (a) - (e)). We also compared the cal-
culations results for N = 14 against our ideal 15-cell
structure with tuned end cells and full cell termi-
nation, both of which have the same set of relevant
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modes (Figure 14 (f)). The comparison shows that
the calculated and simulated data largely agree with
each other. Thus, the model indeed captures the
general trend of the dispersion relations for all mod-
els. However, discrepancy also arises as the model
assumes continuity at φ = π

2 , i.e., the stopband of
the structure is closed. On the other hand, the sim-
ulated results seem to suggest that there exists a
stopband in our structure [8] [4].

On one hand, it shows that the coupled cavity
model used does not describe our cavity exactly; on
the other hand, we also realize that we might want to
perform further tunings to the cavity and close the
stopband, due to the potential benefits of improving
the mode separation [4]. These are both possible
areas for future studies.

FIG. 14. Comparison between dispersion relations cal-
culated from the coupled resonator model and dispersion
relations simulated by CST Studio. (a) - (e) dispersion
relations of structures corresponding to N = 1, 2, ... 5
with half-cell terminations. (f) The simulation is done
with the optimized 15 cell structure, while the calcula-
tion with the coupled resonator model is done for the
corresponding N = 14 structure with half-cell termina-
tions on both ends.

V. CONCLUSION AND FUTURE WORK

In this project, we successfully optimized the 15-
cell ACS cavity for ACCIL, in which field flatness is
achieved by only varying the geometry of the end
cells, thus reducing the complexity of production
as the middle cells can be mass-produced. We also

studied the effect of machining errors on the resonant
frequency and the electric field distribution, and ver-
ified that such perturbations can be corrected with
tuners installed on the accelerating cells. Finally,
we attempted to use the coupled resonator model to
describe our structure, which captures the general
trend of the dispersion relation, but not the feature
related to the stopband and the two branches of the
passband.

Future projects can look into engineering design
and mechanical simulation, such as the exact cell de-
formation during tuning and its effect on frequency
and field flatness. A detailed tuning algorithm can
also be developed to automate the tuning process.
An improvement on the coupled cavity model can
also be made to include the passbands and the stop-
band into the model, allowing it to describe struc-
tures with dispersion relations that are discontinu-
ous at φ = π

2 , and possibly to use the model to
further characterize the perturbation behavior of the
cavity. Lastly, further optimization can also be done
to explore the possibility of closing the stopband for
a better mode separation.
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