

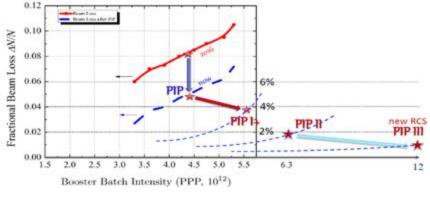
Simulations of an Electron Lens

Tommy Franczak Mentors: Eric Stern, Jim Amundson 8 August, 2018

Motivation

Sanford Underground

Research Facility

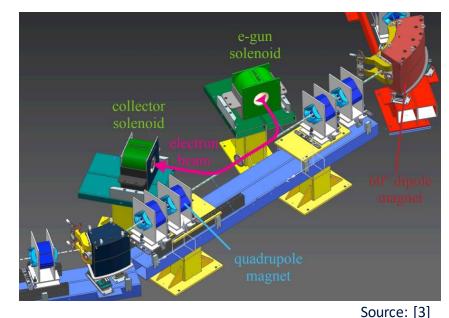

- DUNE (Deep Underground Neutrino Experiment)
 - NOvA 500 Miles -> DUNE 800
 Miles
 - Detector events scale with $\frac{1}{r^2}$
 - Already few events per day
 - Scale beam intensity by 4x
 - Losses at regulatory maximum

Fermilab

Source: Duneforce.org

- 900 kt·MW·years of exposure
 - 50 Years with current technology
 - Space charge contributes to increased losses

Source: [5]

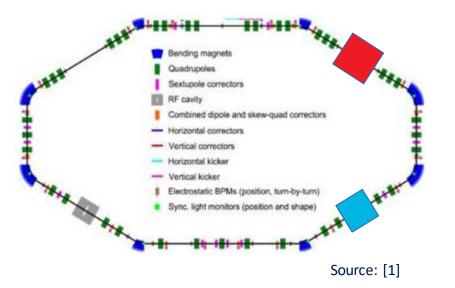


Credit: [1]

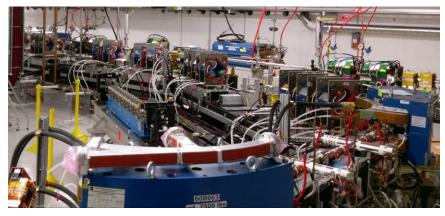
Electron Lens

- Nonlinear element of lattice
- Low-beta Electron beam
- Can control bunch size and intensity
- Compensate space charge
- Radially symmetric kick

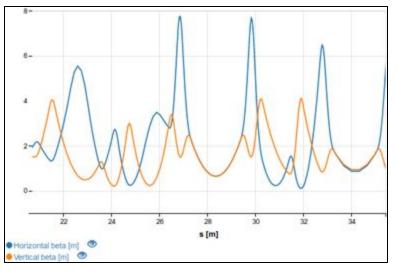
- In IOTA:
 - Recycled from Tevatron beam-beam compensation
 - Space charge compensation


IOTA (Integrable Optics Test Accelerator)

- Experimental Storage Ring:
 - Low-beta Electrons and Protons
 - 40m circumference
 - Non-Linear Magnets, Electron Lens, Electron Columns
- IOTA Timeline:
 - Nonlinear Integrable Optics
 - Phase 1: Electrons 2018-2020
 - Phase 2: Protons 2020-2022
 - Space-charge compensation with electron lens
 - Electron Lens 2020-2022
 - Electron Column 2022-2023

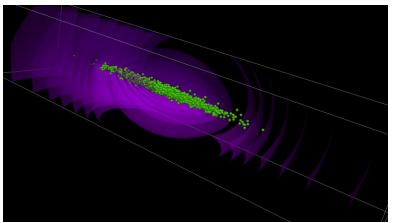

Source: [4]

• Electron lens predicted to compensate space charge by a factor of 2


The IOTA Lattice

Red: Where electron lens is in our simulations Blue: Where actual electron lens will be located

Source: [2]



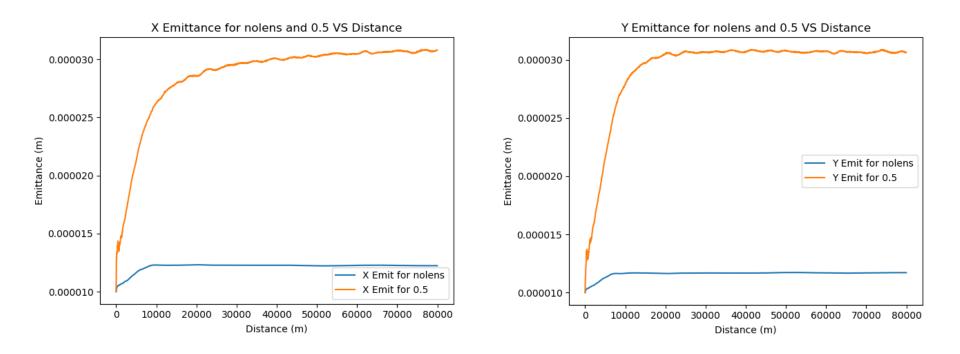
Horizontal and Vertical β-functions

Synergia

- 6D Accelerator Simulation
- Can take MADX lattices
- C++ Functions wrapped in Python
- Perfect option for our simulations:
 - Accommodates collective effects (e.g. Space charge)
 - Has functionality to create elements
- Electron Lens simulated before?

Green spheres: Particles Purple waves: Contours of constant electric potential Source: web.fnal.gov/sites/Synergia

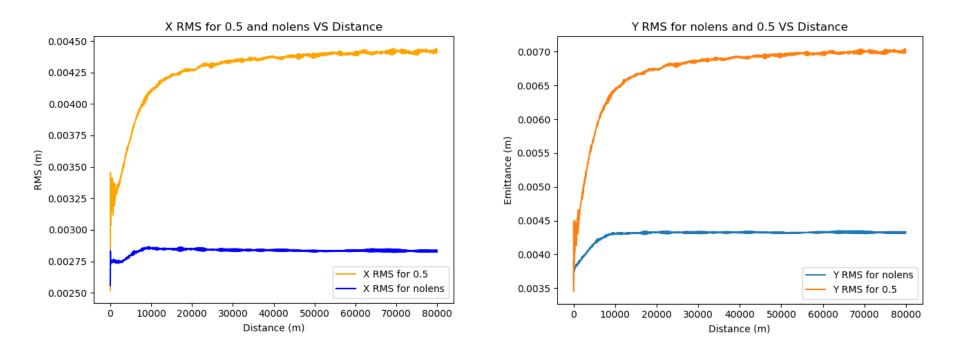
🗲 Fermilab


Simulation parameters

- Took parameters from IOTA documentation
- Altered until tune shift was 0.2

Parameter	Value
Proton Kinetic Energy	2.5 MeV
Real Particles	2.25E9
Macroparticles	1E5
Emittance	1E-5
Bunch Length	1.7 m
Turns	2000
Electron lens current	0.5 A
Electron lens RMS	Sqrt(Emittance * β)
Electron lens distribution	Gaussian

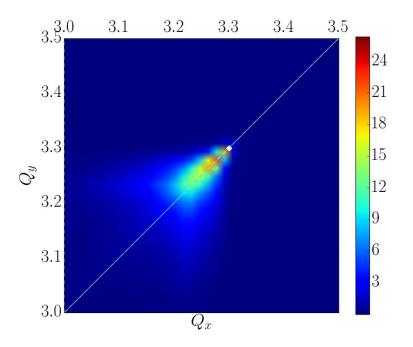
Results – Emittance

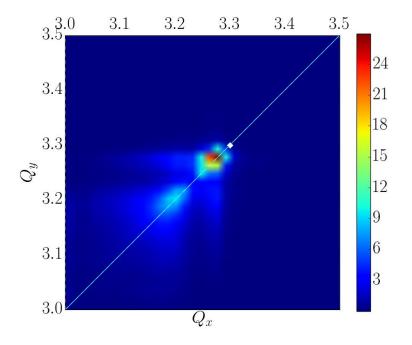


X Emittance Orange: Electron lens at 0.5 A Blue: No electron lens

Y Emittance

Results – RMS




X RMS Orange: Electron lens at 0.5 A Blue: No electron lens

Y RMS

Results – Tune Footprint

- No Electron Lens
- White dot: Tune with no space charge
- Spread due to space charge

- With Electron lens of 0.5 A
- Calculated Tuneshift: 0.166

Conclusion

Benefits in beam stability were not realized in simplified IOTA simulations

Simulation code: <u>https://github.com/TFranczak/Synergia</u> Computing Resources: https://jupyter.radiasoft.org

Questions?

Acknowledgements

- Eric Stern and Jim Amundson
 - Mentors who greatly aided the research process
- Radiasoft

- Sirepo and computing resources

Bibliography

[1] Sergei Antipov, Vladimir Shiltsev, et al. lota (integrable optics test accelerator): Facility and experimental beam physics program. 2016.

- [2] Valishev, Alexander (2018). Status of Integrable Optics Test Accelerator [PowerPoint slides]. Retrieved from https://indico.fnal.gov/event/16269/contribution/30/material/slides/0.pptx.
- [3] Stancari, Giulio (2018). IOTA electron lens: nonlinear optics, cooling, and space-charge compensation [PowerPoint slides]. Retrieved from

https://indico.fnal.gov/event/16269/contribution/41/material/slides/0.pdf.

- [4] V. Shiltsev, "2018 Accelerator and Beam Physics GARD Review", July 31, 2018, Fermilab, Retrieved from https://indico.fnal.gov/event/17718/
- [5] Shiltsev, Vladimir (2017). Fermilab proton accelerator complex status and improvement plans. Modern Physics Letters A, 32(16), 1730012. https://doi.org/10.1142/s0217732317300129

