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Abstract

The LCLS-II (Linac Coherent Light Source) is a 2nd generation X-ray free electron laser cur-
rently being constructed at SLAC. Fermilab is responsible for the design, construction and testing
of seventeen 1.3 GHz and two 3.9 GHz cryomodules used in the LCLS-II. We developed tools in R
to analyze the recorded testing data in a way that could not be done by Fermilab’s ACNET system,
and used them to investigate the performance of cryomodule F1.3-08 and F1.3-10.

1 Introduction

The LCLS-II (Linac Coherent Light Source) is a
2nd generation X-ray free electron laser upgrade to
the current LCLS at SLAC National Accelerator
Laboratory. LCLS-II is designed to produce 1 mil-
lion X-ray pulses per second, compare to 120 pulses
per second of the LCLS. LCLS-II is based on a 4
GeV superconducting electron linac and consists of
thirty-five 1.3 GHz and two 3.9 GHz superconduct-
ing radiofrequency (SRF) cryomodules. Fermilab
is responsible for designing these cryomodules, con-
structing and testing seventeen 1.3 GHz and both
3.9 GHz SRF cryomodules, each with eight 9-cells
niobium SRF cavities [1].

Figure 1: LCLS-II cryomodule in the CMTS-1 test
cave.

Cryomodules built at Fermilab are tested in
the Cryomodule Test Stand (CMTS-1) test cave at
Fermilab’s Cryomodule Test Facility (CMTF). The
test stand is equipped with various data collecting
equipment, in particular radiation detectors. The

layout of these detectors in the test cave is shown
in Fig. 2. ’Chipmunks’, ’scarecrows’ and ’FOXs’
are local vernaculars for Fermilab-built radiation
detectors [2], while TLM (Total Loss Monitor) is
another type of detector that specializes in detect-
ing beam loss over extensive regions in beam line
enclosures [3]. The additional detectors - named
DecaRad - were installed in the test cave just be-
fore the testing of cryomodule F1.3-10. All test
data are collected and stored via Fermilab’s AC-
NET (Accelerator Controls Network).

Figure 2: Radiation detector layout within the test
cave with ACNET device names. TLM is under the
cryomodule, as expressed by the dashed lines.

For the purpose of this paper, we will focus on
the cryomodule testing process. In order to ana-
lyze testing data, we use R [4] - a programming
language that specializes in statistical computing.
R was chosen due to its extensive documentation,
rate of usage at Fermilab and it being an inter-
preted language, thus easier to use and debug than
compiled languages such as C++.
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2 Testing and Purpose

2.1 Testing procedure

Before a cryomodule can be transported to SLAC
for installation, it undergoes rigorous testing at Fer-
milab to ensure that the cryomodule meets strin-
gent performance criteria. Primary criteria in-
clude individual cavity gradient of 16 MV/m, field
emission onset ≥ 14 MV/m, average cavity Q0 ≥
2.7× 1010, and more [8]. Testing procedure can in-
clude the following processes (not exhaustive) [9]:

1. Mapping and setting QL

2. System calibration and calculating gradient

3. Performing power rise to evaluate peak gra-
dient and field emission

4. Magnet testing

5. Measuring static heat load and higher order
modes (HOM’s)

6. Measuring dynamic heat load and intrinsic
quality factor Q0

7. Unit testing.

An important part of testing is monitoring for
field electron emission during power rise. Field
emission (FE) is one of the most important lim-
iting factors in terms of cavity gradient. FE can
interfere with cavity operation and lead to opera-
tional limitation due to radiation provided, and if
intense enough can lead to thermal breakdown and
quenching [5].

2.2 Devices

A goal of cryomodule testing is assessing FE status
for each cavity, including onset, intensity, location
and range of FE. This can be done by analyzing
test cave radiation, dark current and cavity gradi-
ent data using tools that are described in the next
section. We will mainly focus on data collected by
the following devices for FE analysis, along with
their names on ACNET servers

• Cavity gradient (T:1LCVMV - T:8LCVMV)

• Wall chipmunks (G:RD3096 - 3103)

• North/South scarecrows (G:RD3105 - 3106)

• Total loss monitor (G:RD3112)

• Feed/Endcap Faraday cups (T:8IDCFC,
T:8IDCEC)

• DecaRad system (G:RDCR01 - 08)

2.3 Field emission

Electrons in metal are confined from escaping into
vacuum by a potential well. In the presence of a
high electric field, the potential barrier is lowered
and electrons can tunnel out of the cavity wall at
localized points, usually surface impurities. This
field electron emission is then accelerated by the
cavity, giving rise to a field emission current (dark
current) which is governed by the Fowler-Nordheim
equation [5]

I ∝ (βFNE)2.5 exp

(
−BFNφ

3/2

βFNE

)
(1)

where E is the cavity gradient in MV/m, φ is the
niobium workfunction, βFN is the field enhance-
ment factor, and BFN = 6.83× 103.

Figure 3: Fowler-Nordheim tunneling governing
field emission. Vacuum potential barrier is lowered
by the applied electric field.

Since field emission occurs at localized
sites, emitter locations can be determined via
bremsstrahlung radiation, which is X-ray radia-
tion emitted when electrons are deflected by the
cavity wall and is approximately [6]

Ṅ ∝ (βFNE)2.5E5 exp

(
−BFNv(y)φ3/2

βFNE

)
. (2)

Figure 4: Movement of FE electrons from a site in
the cavity. Electrons that hit the cavity wall give
bremsstrahlung, while electrons that go down the
cavity give dark current. [A. Sukhanov]
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Field emission can sometimes be reduced or
eliminated via a processing event. Under suffi-
ciently high cavity gradient, the emitter has a
chance to be destroyed, leaving behind a starburst-
shaped crater region and molten particles. Some-
times the available continuous wave (cw) power is
insufficient to raise the gradient high enough to trig-
ger a processing event; in which case we resort to
high power pulsed processing (HPP). HPP allows
the cavity to reach higher gradient than cw, hope-
fully enough to process away the emitters, while
minimizing power dissipation into liquid helium by
delivering very short and high power pulses [7].

3 Analysis Tools

3.1 Data wrangling

Data wrangling is often the first step in data analy-
sis, which includes taking raw data and transform-
ing it into a more convenient format. Cryomod-
ule test data on ACNET can be exported to an
Excel file (technically tab-separated values) in the
format as shown in Fig. 5. This format includes
logged values for each device as well as timestamp
for each data point. ACNET can export up to 8
devices per file. Often, we would like to explore
the relationship between more than 8 devices, or

between different device types with different data
logging rates. Using R and various R packages, we
developed a data wrangling process for cryomodule
testing data (note: packages or specific functions
involved will from now on be specified in square
brackets)

1. Import files to R environment as a list of data
frame objects [rio]

2. Split data frames up by Time/Device pairs

3. Convert timestamps from each data frame
from strings to date-time objects

4. Join Time/Device pairs, preserving data from
all pairs [data.table]

After this process, we now have a list of data
frames; each corresponds to an imported file. In a
data frame, all excess Time columns are eliminated
while data from all devices are preserved regardless
of logging rate as seen in Fig. 6. Although this
process takes care of all devices regardless of log-
ging rate, it is highly recommended that the user
limits to one type of device per file, as many de-
vices with different logging rates can unnecessarily
enlarge the data frame since the process preserves
all timestamps introduced.

Figure 5: Original imported data format. Each device is accompanied by a timestamp column, which is
inconvenient.
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Figure 6: Cleaned data format. Excess timestamp columns are removed, and the ’Time’ column is now
a date-time object.

Next, we would like to join all data frames in the
list. To do this, the user starts by specifying a list
of devices of interest. This is not required for small
data sets, but for big data sets (approximately 100
Mb and above) it is recommended to not select all
devices to not slow down the process. The script
then go through all data frames in the list and pick
out devices that match the specified names, then
join them to the data frame with the largest number
of data points by nearest timestamp [data.table],
so as not to miss any data point while staying at a
manageable size. The result is a data frame com-
plete with timestamp as date-time objects and all
devices of interest with all data preserved. This
is the backbone of all other tools developed in the
following sections.

3.2 Data visualization

A crucial part of exploratory data analysis is data
visualization. We would like to be able to explore

time series plots of devices as well as their relation-
ships with each other in an efficient way, both for
reactive troubleshooting and logging data travelers
for each cryomodule. Thus we developed a web ap-
plication [shiny] that can be run both on the web
for remote access and offline which takes in Excel
files exported from ACNET and outputs an inter-
active, feature-rich plot [plotly, ggplot2].

The app incorporates previous data wrangling
tool to process the data. Afterwards, the user can
specify a variety of plot parameters, such as inde-
pendent and dependent variables, time frames, and
plot and axis labels. It is important that the user
specify the time frames for large data sets, as plot-
ting can take a long time without filtering. The
app supports plots of one versus multiple devices
and time series plots. The plot output is highly
interactive and comes with a variety of features,
including but not limited to hiding/showing data
for certain devices, returning values of points upon
hovering, zooming in/out, exporting, etc.
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Figure 7: Layout of the web application. Some interactive features can be seen from the toolbar on the
top right corner of the figure.

For further investigation with more complicated
and detailed plots, manual plotting is required [gg-
plot2]. A brief guide for this process is in the docu-
mentation for the project. Future work can include
incorporating this into the web app.

Figure 8: An example of a type of graph that is
currently only able to be plotted manually.

3.3 Model fitting

In order to have a complete characterization of a
cryomodule, we would like to investigate the on-
set of FE for each cavity. Since chipmunk data is
logged every minute (1/60 Hz), it is possible for the
true FE onset to be lower than the observed onset

level. We looked for a way to evaluate the true
onset level using a variety of model fits.

3.3.1 Field emission radiation

For FE radiation data, we tested a log-linear trans-
form model [lm] of the form ln y = Ax + B, or
y = CeAx. This model is fitted with the condi-
tion that the background level is close to zero, as
the log-linear transform model has no y-intercept.
One challenge with this model is the fact that FE
does not show up until a certain gradient level. Be-
low that level, radiation count stays at background,
which when fitted with a logarithmic model does
not return a model with great accuracy, due to the
constant ”tail” of the data distribution. We circum-
vented this issue by manually specifying thresholds
at which the model will be fitted, under the assump-
tion that small variations in the threshold around
the true onset point results in small variations in
the model and consequently, small variations in pre-
dicted true onset. We tested the model and found
good agreement between the model and the actual
data set. We then predicted the actual onset by the
point at which the model deviates significantly from
background; in this case when the model crosses a
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specified level.

Figure 9: Log-linear transform model ln y = Ax+B
for FE radiation. Note the difference between the
models near the onset point. The blue line repsre-
sents DecaRad #2, the rest are chipmunks.

As the chipmunks are located some distance
away (4 meters) from the cavities, usually multiple
chipmunks will pick up FE radiation activity from
a cavity at different magnitudes. Furthermore im-
mediately before F1.3-10 testing, CMTS-1 installed
the DecaRad system located directly in front of the
cavities which has a different reading scale than
that of the chipmunks. This results in different pre-
dicted onset levels across devices due to the loga-
rithmic model fitting and our method of predicting
onset. We would like to cross-check FE onset across
different devices, and thus we employed quantile
normalization method. This method transforms
data to have a common distribution of intensities,
under the assumption that the data sets have sim-
ilar distributions (in this case, FE radiation distri-
bution). Normalization is achieved by forcing the
observed distributions to be the same using the av-
erage distribution - obtained by taking the average
of each quantile across samples - as reference [10].
We see that after applying quantile normalization,
all 3 devices have approximately the same predicted
onset, therefore the DecaRad system and chipmunk
show the same level of onset for a cavity.

Figure 10: Normalized log-linear transform model.

3.3.2 Dark current

For dark current data, we tested a similar model to
that from the previous section. We ran into an im-
mediate challenge: the dark current data includes
data points with negative values. We resolved this
by subtracting the smallest value in the whole data

set from the data set. However, the background
level for dark current is now no longer close to zero,
thus the assumption for the log-linear transformed
model fails.

Since dark current is directly related to the
Fowler-Nordheim (FN) equation, we decided to use
nonlinear least squares [nls] to fit the FN model of
the form y = Ax2.5 exp(−B/x) + C derived from
Eq. 1 to the data set. The default algorithm
for R’s [nls] function is Gauss-Newton algorithm
(also called multivariate Newton-Raphson), which
is an iterative method that requires an initial guess
[11, 12]. For the algorithm to converge, the initial
estimates must be ”close enough”.

A way to estimate these parameters is
by applying a linear regression to the se-
ries expansion of the FN model. This
has the form C + Ax2.5 exp(−B/x) = C +

Ax2.5
(

1− B
x + B2

2!x2 − B3

3!x3 + B4

4!x4 +O
(

1
x5

))
. This

method works most of the time for dark current
data. We also found a certain set of initial values
A = 0.028, B = 30, C = 0.5 that has so far per-
formed very well for dark current data. In order
to fit the model to the data set, we subtract the
smallest value, fit the model then shift everything
back to its original values. We see from Fig. 11
that the model fits the data well.

Figure 11: Fowler-Nordheim model Ax2.5e−
B
x + C

for dark current. Horizontal line is average back-
ground, while vertical line is predicted FE onset.

The onset is calculated by first finding the av-
erage background level, subtract that from the FN
fitted model, then finding the root of that equation
using Newton-Raphson method with the function
uniroot. This method requires the function evalu-
ated at the start and end of the interval of interest
to bracket the root (i.e. have different signs).

3.4 Challenges and future works

We encountered a fair number of challenges during
the development process. One of the most trou-
blesome ones was the inclusion of a colon in all
ACNET devices name. Colons are reserved in R,
thus it cannot be used normally as a character,
although it can be used in character strings. One
way to overcome this is to wrap all expressions
including ACNET names in eval(parse(text
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= paste([concatenate strings here], sep =

’’))), however this is rather clunky and can be
unsightly. Suggestion for future work can include
removing all colons from ACNET device names
when importing files, thus simplifying the process.

Another issue is that the online-hosted web ap-
plication does not accept huge data files (approx.
150 Mb) while there is no such issue with the offline
R script itself. There is no definite clue as to why
this happens.

Additionally, as mentioned above we need a ro-
bust way of determining initial conditions for the
[nls] function. One suggestion on how to do this
is to map out the RMS values for the FN model
with different coefficients as a function of the true
values, and find the minimum of that function us-
ing gradient descent or other methods. Another
suggestion would be to find out the actual physi-
cal parameters of niobium cavities, and finding the
initial values using the FN equation (although the
theoretical values might be different from real life
ones). One can also look into using another method
altogether, such as spline fitting, generalized linear
model or linear regression of series expansion. Once
a reliable method has been found, we would also like
to apply it to fit Eq. 2 to the FE radiation data.

We would also like to have a more reliable way of
finding FE onset. Currently the method of finding
FE onset based on FE radiation depends on the
assumption that perturbations to the model does
not vary the onset too much, and the choices of
thresholds can be rather arbitrary. Furthermore,
sometimes the average background line and the fit-
ted FN model line does not cross, which means the
root finding algorithm fails; thus it needs more re-
finement.

Finally, we would like to have a complete cal-
ibration system between chipmunks, scarecrows,
TLM and DecaRads. This will help in trou-
bleshooting, and might give rise to some more in-
teresting insights.

4 Results

We tested our developed data wrangling and visual-
ization tools extensively with certain cryomodules,
and found that they have been robust and effective
in terms of data preprocessing.

We analyzed FE data for cryomodule F1.3-09
tested in March 2018 for cavity #5 and #6 to test
the fitting models. There we predicted pre-HPP
emission onset to be at 13 MV/m and 13.4 MV/m
respectively. This agrees well with empirically de-
termined data, thus showing that the fitted model
works decently. We also applied the fitting tools
to test data for cryomodule F1.3-08 in June and
F1.3-10 in July, which is summarized in the table
below.

Cryomodule Predicted Before HPP Error
& cavity (MV/m) (MV/m) (%)

F1.3-09 #5 13 15 13.3
F1.3-09 #6 13.4 14 4.29
F1.3-08 #7 6 7 14.29
F1.3-10 #2 13.1 12.5 4.8
F1.3-10 #5 12.8 15 14.7

Note that a smaller value with a high percentage
of error is not necessarily bad, as onset can happen
before data is logged into the system. From this re-
sults, we see that the fitted model works relatively
well with the data but could benefit from more re-
finement.

5 Conclusion

We developed tools in R to process and analyze
cryomodule testing data. With these tools, AC-
NET data (not limited to just cryomodule testing
data) can now be processed in a way that allows
for manipulation for many purposes. We can also
visualize field emission data, which can help with
reactive troubleshooting and logging data travel-
ers for cryomodules. Furthermore, these developed
tools can be applied to analyze data outside of cry-
omodule testing. Future improvements can include
streamlining and optimizing, implementing extra
tools into the developed web application, and more
as outlined in Section 3.4.
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