
Restructuring anab::ParticleID
Kirsty Duffy and Adam Lister

1

Introduction 2

The current anab::ParticleID class is currently very
restrictive.

There are currently methods for the Chi2 algorithm
and PIDA but nothing else.

If you want to add a PID algorithm, this requires
changing LArSoft each time!

We’ve recently been doing some PID work on MicroBooNE. In the process, we have
developed a new organisation of the anab::ParticleID class which is easily
extendable, and should be able to hold results for any potential algorithm we could
think of.

New Struct 3

struct sParticleIDAlgScores {
std :: string fAlgName;
kVariableType fVariableType;
int fAssumedPdg;
float fValue;
geo :: PlaneID fPlaneID;

}

enum kVariableType {
kGOF, // Goodness of Fit
kLikelihood, // Likelihood
kLikelihood_fwd, // Likelihood, forward assumption
kLikelihood_bwd, // Likelihood, backward assumption
kLogL, // Log-Likelihood
kLogL_fwd, // Log-Likelihood, forward assumption
kLogL_bwd, // Log-Likelihood, backward assumption
kScore, // Generic Particle ID score
kPIDA, // PIDA value
kdEdxtruncmean, // dE/dx versus truncated mean
kdQdxtruncmean, // dQ/dx versus truncated mean
kTrackLength, // Track Length
kNotSet // Not set

};

Algorithm name

Assumed PDG (for likelihoods, GOFs, etc.)

Value produced by algorithm

Plane ID for the algorithm result

This is fed by c++ algorithms:
● Bragg_Likelihood
● Chi2
● PIDA
● DepVRangeE
● dEdxVLength
● ...

The change comes down to addition of a new vector of sPArticleIDAlgScores
structs to the class.

This is fed by c++ algorithms:
● Chi2
● PIDA
● ...

New Struct: fAlgName 4

enum kVariableType {
kGOF, // Goodness of Fit
kLikelihood, // Likelihood
kLikelihood_fwd, // Likelihood, forward assumption
kLikelihood_bwd, // Likelihood, backward assumption
kLogL, // Log-Likelihood
kLogL_fwd, // Log-Likelihood, forward assumption
kLogL_bwd, // Log-Likelihood, backward assumption
kScore, // Generic Particle ID score
kPIDA, // PIDA value
kdEdxtruncmean, // dE/dx versus truncated mean
kdQdxtruncmean, // dQ/dx versus truncated mean
kTrackLength, // Track Length
kNotSet // Not set

};

Assumed PDG (for likelihoods, GOFs, etc.)

Value produced by algorithm

Plane ID for the algorithm result

This is fed by c++ algorithms:
● Bragg_Likelihood
● Chi2
● PIDA
● DepVRangeE
● dEdxVLength
● ...

This is fed by c++ algorithms:
● Chi2
● PIDA
● ...

fAlgName: this is just a string which can be used to identify an algorithm in the
absence of anything else (“Chi2”, “PIDA_mean”, etc.).

struct sParticleIDAlgScores {
std :: string fAlgName;
kVariableType fVariableType;
int fAssumedPdg;
float fValue;
geo :: PlaneID fPlaneID;

}

Algorithm name

New Struct: fVariableType 5

Algorithm name

Assumed PDG (for likelihoods, GOFs, etc.)

Value produced by algorithm

Plane ID for the algorithm result

This is fed by c++ algorithms:
● Bragg_Likelihood
● Chi2
● PIDA
● DepVRangeE
● dEdxVLength
● ...

This is fed by c++ algorithms:
● Chi2
● PIDA
● ...

kVariableType: an enum which can be used to easily get at the type of variable you
want.

struct sParticleIDAlgScores {
std :: string fAlgName;
kVariableType fVariableType;
int fAssumedPdg;
float fValue;
geo :: PlaneID fPlaneID;

}

enum kVariableType {
kGOF, // Goodness of Fit
kLikelihood, // Likelihood
kLikelihood_fwd, // Likelihood, forward assumption
kLikelihood_bwd, // Likelihood, backward assumption
kLogL, // Log-Likelihood
kLogL_fwd, // Log-Likelihood, forward assumption
kLogL_bwd, // Log-Likelihood, backward assumption
kScore, // Generic Particle ID score
kPIDA, // PIDA value
kdEdxtruncmean, // dE/dx versus truncated mean
kdQdxtruncmean, // dQ/dx versus truncated mean
kTrackLength, // Track Length
kNotSet // Not set

};

New Struct: fAssumedPdg 6

Algorithm name

Value produced by algorithm

Plane ID for the algorithm result

This is fed by c++ algorithms:
● Bragg_Likelihood
● Chi2
● PIDA
● DepVRangeE
● dEdxVLength
● ...

fAssumedPdg: This is used for algorithms where an assumption about the particle
species is made (e.g. Chi2 with respect to the Muon hypothesis).

enum kVariableType {
kGOF, // Goodness of Fit
kLikelihood, // Likelihood
kLikelihood_fwd, // Likelihood, forward assumption
kLikelihood_bwd, // Likelihood, backward assumption
kLogL, // Log-Likelihood
kLogL_fwd, // Log-Likelihood, forward assumption
kLogL_bwd, // Log-Likelihood, backward assumption
kScore, // Generic Particle ID score
kPIDA, // PIDA value
kdEdxtruncmean, // dE/dx versus truncated mean
kdQdxtruncmean, // dQ/dx versus truncated mean
kTrackLength, // Track Length
kNotSet // Not set

};

This is fed by c++ algorithms:
● Chi2
● PIDA
● ...

Assumed PDG (for likelihoods, GOFs, etc.)

struct sParticleIDAlgScores {
std :: string fAlgName;
kVariableType fVariableType;
int fAssumedPdg;
float fValue;
geo :: PlaneID fPlaneID;

}

New Struct: fValue 7

Algorithm name

Plane ID for the algorithm result

enum kVariableType {
kGOF, // Goodness of Fit
kLikelihood, // Likelihood
kLikelihood_fwd, // Likelihood, forward assumption
kLikelihood_bwd, // Likelihood, backward assumption
kLogL, // Log-Likelihood
kLogL_fwd, // Log-Likelihood, forward assumption
kLogL_bwd, // Log-Likelihood, backward assumption
kScore, // Generic Particle ID score
kPIDA, // PIDA value
kdEdxtruncmean, // dE/dx versus truncated mean
kdQdxtruncmean, // dQ/dx versus truncated mean
kTrackLength, // Track Length
kNotSet // Not set

};

Assumed PDG (for likelihoods, GOFs, etc.)

Value produced by algorithmThis is fed by c++ algorithms:
● Chi2
● PIDA
● ...

struct sParticleIDAlgScores {
std :: string fAlgName;
kVariableType fVariableType;
int fAssumedPdg;
float fValue;
geo :: PlaneID fPlaneID;

}

fValue: This contains the value or score from a list of algorithms which feed the
ParticleID producer module. These algorithms can be general use or experiment
specific!

New Struct: fPlaneID 8

Algorithm name

fPlaneID: Many algorithms make use of charge information from a single plane.
This allows you to know which!

enum kVariableType {
kGOF, // Goodness of Fit
kLikelihood, // Likelihood
kLikelihood_fwd, // Likelihood, forward assumption
kLikelihood_bwd, // Likelihood, backward assumption
kLogL, // Log-Likelihood
kLogL_fwd, // Log-Likelihood, forward assumption
kLogL_bwd, // Log-Likelihood, backward assumption
kScore, // Generic Particle ID score
kPIDA, // PIDA value
kdEdxtruncmean, // dE/dx versus truncated mean
kdQdxtruncmean, // dQ/dx versus truncated mean
kTrackLength, // Track Length
kNotSet // Not set

};

Assumed PDG (for likelihoods, GOFs, etc.)

Value produced by algorithmThis is fed by c++ algorithms:
● Bragg_Likelihood
● Chi2
● PIDA
● DepVRangeE
● dEdxVLength
● ...

This is fed by c++ algorithms:
● Chi2
● PIDA
● ... Plane ID for the algorithm result

struct sParticleIDAlgScores {
std :: string fAlgName;
kVariableType fVariableType;
int fAssumedPdg;
float fValue;
geo :: PlaneID fPlaneID;

}

Concerns With Implementation

● Is there a better way to store these structs than a vector?
○ Each struct contains results from a single plane, for a single

assumed particle species. This could easily get unwieldy.
○ Is a map of structs any better than this?

● Should we retire old methods?
○ Breaking changes are undesirable. Possible that we could have two

accessors for the same variable in the mid-term but could result in
code being written which isn’t forward-compatible.

● How do we deal with algorithms with multiple planes?
○ Possible ideas would be a vector of geo::PlaneIDs, or a bitset, but

neither of these seems very clean

Any input on these would be really appreciated.

9

Summary

We think that this reorganisation of the code is much more flexible: it allows for
new PID algorithms and can be used for shower PID in addition to track PID.

The main downside is that this relies on the analyser knowing what’s in the struct,
and so it requires good experiment-specific documentation.

There are also a number of concerns which we have about implementation, as
noted on the previous slide.

We’re interested to hear any feedback you have on how this could be improved!

10

