
Rank of Visibilities Matrix

Summary

Definitions
The matrix of visibilities ν

i,j
 (correlating feed i with feed j at frequency ν) for fixed ν but varying i and j

is a Hermitian non-negative matrix we denote by ν  and call the visibilities matrix.  The contribution of
the signal to ν we denote by ν

sky.  The rank of this matrix is the number of non-zero eigenvalues.

We denote the contribution of a single points source to ν
sky

 by ν
s .  A point source in direction ns  has

polarization tensor
  

ν
s
[n] = pνs δ(2)n, ns

pνs =
1
2

fνI + fνQ fνU + ⅈ fνV

fνU - ⅈ fνV fνI - fνQ

where  fνI ≥ fνQ
2
+ fνU

2
+ fνV

2
> 0.   A point source is completely polarized when

  fνI = fνQ
2
+ fνU

2
+ fνV

2 .

Then rank[ν
s ] ≤ rank[pνs ] ≤ 2. 

Two  feeds,  i  and  j,  are  said  to  be  aligned  at  a  point  source  when  the  field  patterns  obeys

ℱiν, ns = c[ν] ℱiν, ns where c[ν] is any complex function of frequency.  

Results

rank[pνs ] = 

2 fνI > fνQ
2
+ fνU

2
+ fνV

2 partially or nonpolarized

1 fνI = fνQ
2
+ fνU

2
+ fνV

2
> 0 completely polarized

0 fνI = fνQ = fνU = fνV = 0 no source

Two conditions under which rank[ν
s ] = 1 are

1) a completely polarized point source
2) when all the feeds are aligned 

If  there  is  a  dominant  point  source  then  the  above  will  be  approximately  true  of  ν
sky

 in  the  sense  that
the  number  of  “large”  eigenvalues  will  be  given  by  the  previous  rank  formulae.   The  calibrations  noise
sources (ground or drone), the Sun approximate dominant point sources no matter the pointing of the
dishes.   The  brightest  radio  sources,  e.g.  Cassiopeia  A  and  Cygnus  A,  approximate  dominant  point
sources when the dishes are pointing toward them.

For  Tianlai  the  calibration  noise  sources,  either  on  the  ground  or  on  the  drone,  should  be  nearly  com-
pletely polarized since only one voltage stream is generated.

If the feeds on either the dishes and cylinders are identical and non-interacting then all the E-W feeds 

should be aligned as should all the N-S feeds.

Visibilities



The contribution of the sky signal to a visibility, ν
i,j,is given by

  ν
i,j = gi gj* ∫ⅆ2n ℱiν, n ·


ν[n] ·ℱjν, n

*
ⅇⅈ 2π

ν

c
(xi-xj)·n

where n is the direction on the sky, ℱiν, n is the complex field pattern vector in the sky n ·ℱiν, n = 0

and 

ν[n] is the polarization tensor in direction n

  

ν[n] = 1

2
Iν[n] +Qν[n] Uν[n] + ⅈ Vν[n]
Uν[n] - ⅈ Vν[n] Iν[n] -Qν[n]

.



ν[n] is the non-negative Hermitian polarization tensor n ·ν[n] = 0.  Physically

  

ν[n]∝ E

˜
ν, n⊗E

˜
ν, n* 

where E
˜
[ν] is the temporal Fourier transform of the electric field of incoming radiation from direction n

which  is  of  course  transverse  n ·E
˜
ν, n = 0.   Here  i  and  j  refer  to  different  feeds  and  xi  is  the  nominal

position of feed i.  

The  phase  factors  ⅇⅈ 2π
ν

c
xi·n

  in   ν
i,j

 represent  a  first  order  correction  to  the  varying  times  of  flight  to
different  feeds,  here  xi  is  the  nominal position of feed  i.  These factors  do  not represent an approxima-

tion  since  any  additional  corrections  will  be  absorbed  in  ℱiν, n.   Rather   these  factors  are  only  a

convention in the definition of ℱiν, n.

The matrix of visibilities for all i and j is called the visibilities matrix  and denoted by  ν
sky.

Stokes Parameters

The Stokes parameters are Iν[n], Qν[n], Uν[n] and  Vν[n] which are real.  From its physical definition the
Hermitian matrix 


ν[n] is non-negative matrix  and satisfies

  Iν[n] ≥ Qν[n]2 + Uν[n]2 + Vν[n]2 ≥ 0.
Different types of light are

  

unpolarized light Qν[n] = Uν[n] = Vν[n] = 0

purely polarized light Iν[n] = Qν[n]2 + Uν[n]2 + Vν[n]2

linearly polarized light Vν[n] = 0
circularly polarized light Qν[n] = Uν[n] = 0
elliptically polarized light Qν[n]2 + Uν[n]2 ≠ 0 && Vν[n] ≠ 0

no light Iν[n] =Qν[n] = Uν[n] = Vν[n] = 0

.

Generically 

ν[n] has rank 2 but for pure polarization Detν[n] = 0 in which case it has rank 1 unless 



ν[n] = 0 except in the case of no light.

Eigen-Decomposition into 2 Pure Polarization States

 One can decompose 

ν[n] into two polarization eigenstates:

  

ν[n] = Iν+[n] e+[n]⊗e+[n] + Iν-[n] e-[n]⊗e-[n]

where

  Iν±[n] = Iν[n] ± Qν[n]2 + Uν[n]2 + Vν[n]2
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are real.   Thus Iν+[n] ≥ Iν-[n] ≥ 0.  The unit normalized eigenvectors satisfy
  e+[n] ·e+[n]* = e-[n] ·e-[n]* = 1
e+[n] ·e-[n]* = 0

e+[n] ·e+[n]* + e-[n] ·e-[n]* = I

.

but are only determined up to a phase factor.  In general e±[n] are complex vectors but can be chosen
to be real for linearly polarized light.  Purely polarized light has Iν+[n] > 0 and Iν-[n] = 0 while unpolarized
light has Iν+[n] = Iν-[n] > 0 and of course no light has Iν+[n] = Iν-[n] = 0.  For unpolarized light any orthonor-
mal basis e±[n] can be chosen for the unit normalized eigenvectors.

Dominant Point Source

For an unresolved (point) source in direction ns
  

ν[n] = pν

s δ(2)n, ns 

 where 

   pν
s = 1

2
fνI + fνQ fνU + ⅈ fνV

fνU - ⅈ fνV fνI - fνQ

and fνI ≥ fνQ
2
+ fνU

2
+ fνV

2
≥ 0.  The quantity fνI  is more conventionally written fν and is called the 

flux density.

One can decompose into two pure polarization states
  pν

s = fν+ e+
s
⊗e+

s
+ fν- e-

s
⊗e-

s

 where
  e+

s
·e+

s *
= e-

s
·e-

s *
= 1

e+
s
·e-

s *
= 0

and

  fν± = fνI ± fνQ
2
+ fνU

2
+ fνV

2

are real and fν+ > fν- > 0.  Purely polarized light has fν+ > 0 and fν- = 0 while unpolarized light has fν+ = fν-.

For a dominant point source the visibility is

  ν
i,j = gi ⅇⅈ 2π

ν

c
xi·ns ℱiν, ns· pν

s ·gj ⅇⅈ 2π
ν

c
xj·ns ℱjν, ns

*

=∑± fν± gi ⅇ
ⅈ 2π ν

c
xi·ns ℱiν, ns·e±

s
⊗gi ⅇⅈ 2π

ν

c
xj·ns ℱjν, ns·e±

s

*

so the visibilities matrix may be written.
   ν

s = fν+ +s ⊗+
s * + fν- -s ⊗-

s *

 where

   ±
s = gi ⅇⅈ 2π

ν

c
xi·ns ℱiν, ns·e±

s
.

Since ν
s
 is the sum of two rank 1 tensors it’s rank must be 2 or less.

If the source is purely polarized then fν- = 0 and ν
s = fν+ +s ⊗+

s
 which has rank 1.  

Another  case  where  the  visibilities  matrix  has  rank  1  is  when  all  the  field  patterns  are  aligned  at  the

source  (n = ns)  i.e.:   ℱiν, ns = ziν, ns ℱ0ν, ns  where  the  zi  are  non-zero  complex  numbers.   In  this
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case

  ν
i,j = gi ⅇⅈ 2π

ν

c
xi·ns ziν, ns gj ⅇⅈ 2π

ν

c
xj·ns zjν, ns

*
ℱ0ν, ns · pν

s ·ℱ0ν, ns
*


or
  ν

s = pνs s[ν]⊗s[ν]*

where 

   pνs = ℱ0ν, ns · pν
s ·ℱ0ν, ns

*
≥ 0

s[ν] = gi ⅇⅈ 2π
ν

c
xi·ns ziν, ns

.

Since pν
s

 is a non-negative Hermitian matrix it follows that pνs ≥ 0.  This condition for a rank 1 visibilities
matrix  only  has  to  do  with  the  telescope  design  (which  determines  the  field  patterns)  and  has  nothing
at all to do with the illumination pattern from the sky.  

Could one use the rank of ν
s
 to “align” the feeds on a telescope by pointing it at a bright unpolarized 

point source? or use the eigenvalues to test the alignment?

By definition an array of identical feeds are aligned.  Ideally all the Tianlai E-W feeds are aligned as are
all  the  Tianlai  N-S  feeds  and  one  should  find  Rank[ν

s ] = 1  when  one  only  correlates  either  E-W  or  N-S
feeds.   However  the  E-W  and  N-S  feeds  should  not  be  aligned  so  if  one  correlates  both  E-W  and  N-S
feeds then one should find Rank[ν

s ] = 2 so long as the dominant source is not purely polarized.

The  calibration  noise  source  (on  the  ground  or  on  the  drone)  should  be  purely  polarized  since  they
generate only a single voltage stream.  In this case one should find Rank[ν

s ] = 1 even when correlating
between E-W and N-S feeds.

Mathematica Computation
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