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NOvA is collaboration of 180 scientists and engineers from 28 institutions which studies neutrino
oscillations using the existing NuMI neutrino beam at Fermilab. The NOvA experiment is designed
to search for oscillations of muon neutrinos to electron neutrinos by comparing the electron neutrino
event rate measured at the Fermilab site with the electron neutrino event rate measured at a location
just south of International Falls, Minnesota, 810 kilometers distant from Fermilab. If oscillations
occur, the far site will see the appearance of electrons in the muon neutrino beam produced at Fer-
milab. In this project, I describe an application of convolutional neural network (CNN) technology
to the problem of identifying neutrino particle interactions in sampling calorimeters. The goal of
my project was to create, tune, and implement a cosmic rejection network.

I. INTRODUCTION AND THEORY

Neutrinos are subatomic particles produced by the de-
cay of radioactive elements and are elementary particles
that lack an electric charge. The neutrino was first pos-
tulated in December, 1930 by Wolfgang Pauli to explain
the energy spectrum of beta decays, the decay of a neu-
tron into a proton and an electron. Pauli theorized that
an undetected particle was carrying away the observed
difference between the energy and angular momentum of
the initial and final particles. Neutrinos come in three va-
rieties, or what is known as flavors: muon neutrinos, elec-
tron neutrinos and tau neutrinos. Scientists know that
neutrinos oscillate, or change from one type to another,
and have seen, for example, oscillations of muon neutri-
nos to tau neutrinos. But scientists have not seen muon
neutrinos oscillating into electron neutrinos. Unknown
factors that govern neutrino oscillations have significant
implications for our understanding of the makeup of the
universe via this quantum effect. This quantum effect is
illustrated in Figure 1.

FIG. 1. This figure presents an illustration of the quan-
tum mechanical mechanism of neutrino flavor oscillations.
Presented are the three flavors of electron neutrino, muon
neutrino, and tau neutrino respectively. Image courtesy of
Kamioka Observatory/ICRR/University of Tokyo.

Neutrinos, once thought to be massless, are now known

to have masses that are on a scale order of million times
lighter than the masses of other particles in the Standard
Model of physics as depicted in Figure 2.

FIG. 2. The Standard Model of Physics which presents the
mass, charge, and spin of the various subatomic particles in-
cluding neutrinos. Image courtesy of HolgerFiedler nach Be-
nutzer:Murphee via Wikimedia Commons, CC BY-SA.

The masses of the different neutrinos are unknown as
is the neutrino mass hierarchy at this point in time (the
mass hierarchy corresponds to which neutrino is the light-
est and which neutrino is the heaviest). If it is assumed
that the neutrinos νe, νµ and ντ , the flavor eigenstates,
couple with the gauge bosons W± through weak inter-
actions are coherent superpositions of three mass eigen-
states vi , i = 1, 2, 3, i.eνeνµ

ντ

 =

Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3

 ∗
ν1ν2
ν3

 (1)

where U is a unitary 3 x 3 matrix. In other words, it
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is assumed that there are three flavor and mass neutrino
states.1 The lepton mixing matrix, U, (usually denoted
as the PMNS matrix for Pontecorvo, Maki, Nakagawa
and Sakata) can be parametrized in terms of the three
angles Θ13, Θ23, and Θ12 and the CP phase δCP .

U =

 c13c12 c13s12 s13e
iδCP

c23s12s13s23c12e
iδCP c23c12s13s23s12e

iδCP c13s23
s23s12s13c23c12e

iδCP s23c12s13c23s12e
iδCP c13c23

 ·
eiα 0 0

0 eiβ 0
0 0 1


(2)

where cij = cos Θij and sij = sin Θij . Here, both α
and β (both of which are unknown at the present) are the
so-called Majorana phases that are decoupled from the
phenomenon of neutrino oscillation. Figure 3 summarizes
the present knowledge of neutrino masses and mixings
including neutrino mixing angles, the CP phase δCP , and
neutrino mass-squared differences based on the recent fit
after the Neutrino 2014 conference.23

FIG. 3. Known neutrino masses, neutrino mass-
squared differences, and mixing angles. Image cour-
tesy of the 24th Interactional Conference on Neutrino
Physics and Astrophysics, June 2-7th, 2014, Boston, USA.
http://neutrino2014.bu.edu/program/

Knowledge of the mass hierarchy also will help answer
the question of whether neutrinos are their own antipar-
ticles. Particles and antiparticles have opposite charges.
Because neutrinos have no electric charge, it is possible
that neutrinos and antineutrinos are fundamentally the
same.4

1 This excludes the possibility of a fourth neutrino flavor or possi-
bly other flavors known as sterile neutrinos

2 M.C. Gonzalez-Garcia, Michele Maltoni, Jordi Salvado, and
Thomas Schwetz. Global fit to three neutrino mixing: critical
look at present precision. JHEP, 1212:123, 2012

3 Neutrino 2014: the 24th Interactional Conference on Neutrino
Physics and Astrophysics, June 2-7th, 2014, Boston, USA.
http://neutrino2014.bu.edu/program/.

4 Research goals — NOvA. (n.d.). Retrieved August 5, 2018, from
http://novaexperiment.fnal.gov/research-goals/

It is theorized that the big bang created equal amounts
of matter and antimatter. When corresponding particles
of matter and antimatter meet, they will annihilate one
another. If the NOvA collaboration discovers that muon
antineutrinos oscillate at a different rate than muon neu-
trinos, then it can be postulated that the symmetry be-
tween the neutrinos and antineutrinos is broken. This
could point towards an origin for the asymmetry of mat-
ter and anti-matter within our universe, and thus the
present state of our universe.

II. THE NOVA EXPERIMENT

The NOvA experiment consists of two functionally
identical detectors in the NuMI (Neutrinos at the Main
Injector) beam at Fermilab which produces a focused
beam with an initial flavor composition largely domi-
nated by νµ and a small intrinsic νµ, νe, and νe com-
ponents. Placing the detectors off-axis at 14.6 millirads
provides a narrow-band neutrino energy spectrum near 2
GeV. The Near Detector, located at Fermilab, is placed
1 km from the neutrino source; the Far Detector is lo-
cated 810 km away near Ash River, Minnesota on the sur-
face.5 Neutrinos are created at the source by firing pro-
tons from Fermilab’s Main Injector into a graphite target.
Fundamental particles come out of the collision between
the protons and the target, including pions, which are
charged particles. Magnetic horns are used to steer the
pions in the direction they want the neutrinos to travel.
The pions eventually decay into muons and muon neu-
trinos, which continue on the same path the pions were
traveling. This neutrino beam is aimed downwards at 3.3
degrees. The beam starts out 150 feet below ground at
Fermilab, and will pass six miles below the surface as it
travels toward Ash River. The neutrino beam creation
process is depicted in Figure 4.

FIG. 4. A schematic of the neutrino beam configuration. Neu-
trinos are created by smashing protons into a graphite target
which creates pions. These pions eventually decay into muons
and muon neutrinos.

The NOvA detectors are composed of extruded PVC

5 K. Anderson et al., The NuMI Facility Technical Design Report,
FERMILAB-DESIGN-1998-01
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cells filled with liquid scintillator which segment the de-
tector into cells with a cross section 3.9 cm wide and 6.6
cm deep. These cells are 15.5 m long in the Far Detec-
tor. Scintillation light from charged particles are cap-
tured by a wavelength shifting fiber which runs through
each cell. The end of the fiber is exposed to a single
pixel on an avalanche photo-diode array to record the
intensity and arrival time of photon signals. The spa-
tial and absolute response of the detector to deposited
light is calibrated out using physical standard candles -
this is such that a calibrated response can be derived
which is a good estimate of the true deposited energy.
Parallel cells are arrayed into planes, which are config-
ured in alternating horizontal and vertical alignments to
provide separate, interweaved X-Z and Y-Z views. The
14,000 ton Far Detector consists of 344,064 total chan-
nels arranged into 896 planes each 384 cells wide which
are subject to external showers of cosmic neutrino and
cosmic ray events.6Information from the two views can
be merged to allow 3D event reconstruction as depicted
in Figure 5.

FIG. 5. The two figures on the right show the views through
the top and side of the three-dimensional figure on the
left. They show the hits produced as charged particles pass
through and deposit energy in the scintillator-filled cells. Il-
lustration courtesy of Fermilab.

III. PROJECT GOALS

A problem in experimental high-energy particle
physics (HEP) is the correct categorization of the particle
interactions recorded in the detectors as signal and back-
ground. This characterization has been done by recon-
structing high-level components such as clusters, tracks,

6 A Convolutional Neural Network Neutrino Event Classifier, Aug.
12, 2016, https://arxiv.org/pdf/1604.01444.pdf

showers, jets, and rings associated with particle inter-
actions recorded by the detector and summarizing the
energies, directions, and shapes of these objects with a
handful of quantities as described above. Utilizing com-
puter vision has made great advances by moving away
from using the specifically constructed features to the ex-
traction of features using a machine learning algorithm
known as a convolutional neural network (CNN). 7 CNNs
are well suited to a broad class of detectors used in HEP
and particularly in high energy neutrino physics such as
in the NOvA experiment.

The near detector of the NOvA experiment is under-
ground while the far detector is located above ground.
The far detector while above ground is subject to approx-
imately 11 billion cosmic rays per day. This presents a
major issue since it is difficult to process the number of
cosmic events. Approximately 107 of these events need to
be rejected in order to properly process the pixel maps.

The goal of the project was to use an algorithm, CVN
(Convolutional Visual Network), to construct a cosmic
rejection network that would be capable of identifying
neutrino interactions based on their topology and to re-
construct those events accurately.

IV. DEEP LEARNING AND CONVOLUTIONAL
NEURAL NETWORKS

The multilayer perceptron (MLP), or traditional neu-
tral network, is a machine learning algorithm with wide
and versatile use in high energy physics. The structure
of an MLP consists of an input layer, one or more hidden
layers, and an output layer. The goal of an MLP is to
approximate a function f in a manner:

f : Rn → Rm (3)

where n corresponds to the dimensionality of the input

~x and m is the dimensionality of output ~f . All layers in
traditional MLPs are fully connected; the output of each
node is the weighted sum of the outputs of all nodes in
the previous layer plus a bias term, operated on by a non-
linear function. Traditionally, the preferred non-linearity
is a sigmoid function such as hyperbolic tangent or the
logistic function. 8 An MLP with a single hidden layer,
under certain assumptions, can be shown to approximate
any function to arbitrary precision given a sufficient num-
ber of hidden nodes. The weights and biases used in an
MLP are typically determined using a method known

7 Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard et al., Backpropagation applied to handwritten zip
code recognition, Neural Comput. 1 (Dec., 1989) 541551.

8 R. Reed and R. Marks, Neural Smithing: Supervised Learning in
Feedforward Artificial Neural Networks. A Bradford book. MIT
Press, 1999



4

as supervised learning. During supervised learning, the
MLP is presented examples where both ~x and the cor-

responding output, ~f , referred to as the ground truth,
are known. The loss, a measure of the error between the
output of the MLP and the ground truth is computed,
and its gradient as a function of the weights and biases
is calculated using the back-propagation algorithm. The
loss is then minimized by altering the weights and bi-
ases using the stochastic gradient descent method. This
procedure is repeated until the errors are reduced to an
acceptable level.

The MLP is a powerful technique, but there are a num-
ber of issues with the technique. Primarily, it scales
poorly to a large number of raw inputs. Historically,
most of the work in developing an MLP for a particular
task is devoted to extracting features from the raw data
that could be used as optimal inputs. In HEP, this is
essentially the process of reconstruction; however, devel-
oping optimal, robust reconstruction routines is difficult
and time consuming using an MLP.

Second, although a single hidden layer can approxi-
mate most functions to an arbitrary precision, the num-
ber of nodes necessary in that hidden layer may approach
infinity. Networks with multiple hidden layers can often
reach the required accuracy with fewer nodes than the
equivalent single layer network, and multilayer networks
can be extremely difficult to train. This is partially due
to the fact that as the input to the sigmoid approaches
±∞, the gradient approaches zero. The updates to the
weights and biases applied using the stochastic gradient
descent method have a term proportional to the gradient,
so this situation can actually slow down or halt learning.

Third, the large number of free parameters in a large
network runs the risk of possibly over-training -a case
in which the network learns to reproduce the training
sample too well and fails to generalize to inputs it has
not seen before.

The focus of this project was on using a convolution
neural network, a highly successful technique in the field
of computer vision identification tasks. The technique
was inspired by studies of the visual cortex system of an-
imals. It was found that the visual cortex contains sim-
ple cells, which are sensitive to edge-like features within
small regions of the retina, and complex cells, which are
receptive to collections of simple cells and are sensitive
to position independent edge-like features.9

These structures can be modeled by performing dis-
crete convolutions to extract simple features across the
visual field. Convolutional neural networks mimic this
structure using a series of convolutional layers that ex-
tract a set of features from the input image and pool-
ing layers that perform dimensionality reduction and add
translational invariance. The data passed from layer to

9 D. Hubel and T. Wiesel, Receptive fields and functional architec-
ture of monkey striate cortex, Journal of Physiology 195 (1968)
215243.

layer in a CNN has a three dimensional structure - height,
width, and channel number. In this case, only one chan-
nel is used. Height and width refer to the dimensions of
the input image, and channel number is defined in anal-
ogy with the RGB channels of color images. For an n
x m convolutional layer, the input data is transformed
according to:

(f · g)p,q,r =

n∑
i=1

m∑
j=1

c∑
k=1

fi,j,k,rgp+i,q+j,k (3)

where (f ·g)p,q,r refers to the (p, q) pixel of the r chan-
nel of the transformed image, n and m are the height
and width of the convolutional kernel, c is the number
of channels of the input image, f is a filter, and g is an
array corresponding to pixel intensities of the input im-
age. The filter f is a four dimensional tensor where i
and j index the height and width of the filter, k indexes
the input channel, and r indexes the output channel, and
it is trained to identify features within the image. For
a fixed k and r, the filter, f , can be thought of as an
n x m convolutional kernel. After applying a separate
convolutional kernel to each channel and performing a
weighted sum across channel, the resulting output image
is known as a feature map. The range of the r dimension
determines the number of c stacks of n x m convolutional
kernels that are trained. Each of these stacks of kernels
produces a feature map which are stored in the channel
dimension of the layer output. Finally, each output pixel
is operated on by a non-linear function.10

The network utilized in this paper is inspired by the
GoogLeNet architecture, which excels at ImageNet im-
age classification task11. The core of GoogLeNets power
comes from its use of the network-in-network (NIN) ap-
proach to augment the learning capacity of convolutional
layers while also reducing dimensionality. In NIN, the
main network is composed of repeating sub-networks,
where each sub-network resembles a complete conven-
tional CNN with convolution layers at a variety of scales
to capture complex behavior. To avoid exponentially in-
creasing the number of feature maps, NINs use a convo-
lutional layer applying 1 x 1 convolutional kernels. This
performs a weighted sum over feature maps to down-
sample into a smaller number of maps. The sub-network
in the GoogLeNet architecture, called the inception mod-
ule, is shown in Figure 6.

Each branch of the inception module applies filters
which extract features of various scales. The GoogLeNet

10 A Convolutional Neural Network Neutrino Event Classifier, Aug.
2016, arXiv:1604.01444v3

11 O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma et
al., ImageNet Large Scale Visual Recognition Challenge, Inter-
national Journal of Computer Vision (IJCV) 115 (2015) 211252
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FIG. 6. . Diagram of the inception module Like any single
layer, the inception module takes the set of feature maps pro-
duced by the previous layer as input. It then distributes those
feature maps to branches, each with filters at different scales.
NIN architecture is implemented with 1 x 1 convolutions to
down-sample into a smaller number of maps, maintaining the
dimensionality of the input maps. Separate branches perform
33 and 55 convolution, as well as 3 x 3 overlapping pooling.

architecture also makes use of the technique local re-
sponse normalization (LRN) in which the response of a
given cell in a kernel map is normalized relative to the
activity of adjacent kernel maps. This creates competi-
tion for large valued features between outputs computed
by different kernels which helps the network avoid local
minima and to converge to a more optimal set of weights.

The neutrino flavor state can be determined in
charged-current (CC) interactions which leave a charged
lepton in the final state; an electron in the case of νe, a
muon in the case of νµ, or a tau in the case of ντ . Neutral-
current (NC) interactions bear no signature of the flavor
of the interacting neutrino and are thus a background for
the charged-current analyses, but may be signal events
in other searches. To support these analyses, the CVN
identifier to characterize candidate neutrino events into
one of the following interaction types:

* νµ charged current- A muon plus a hadronic com-
ponent. One of the main topological features of these
events is the long, low dE/dx track corresponding to the
track of a minimally ionizing muon.
* νe charged current- An electron plus a hadronic com-
ponent. The electron topology is typically a wide shower,
rather than a track, whose dimensions are related to the
radiation length of the detector material.
* ντ charged current - A tau plus a hadronic component.
The tau is extremely short lived and not visible in the
NOvA detector but decays immediately with varying fi-
nal state probabilities that may produce pions, electrons,
muons, and neutrinos.
*ν NC- The outgoing lepton in these interactions is a neu-
trino, which will travel onward undetected. Thus, only
the hadronic component of these events is visible, mak-
ing their flavor impossible to identified. *Cosmic events
- (Usually) Long muon tracks entering tops or sides

While it is useful to think about each category as a

particular iconic topology as described above, misiden-
tification can still occur. For example, particular NC
interactions can be mistaken for CC interactions when
they produce pions which look like leptonic activity. A
charged pion track can appear quite similar to a muon
track, with the exception of a spike in energy deposition
at the end of the track. As another example, a neu-
tral pion will rapidly decay to produce a pair of pho-
tons which themselves produce electromagnetic showers,
which are difficult to distinguish from showers produced
by an electron. By constructing an identification algo-
rithm like CVN, which views the entire event topology,
the hope is to minimize these misidentification failure
modes but they still will remain a challenge.

V. TRAINING

The CVN was implemented and was developed using
the Caffe framework. Caffe, an open framework for deep
learning applications, is highly modular and makes accel-
erated training on graphics processing units straightfor-
ward. Common layer types are pre-implemented in Caffe
and can be arranged into new architectures by specifying
the desired layers and their connections in a configura-
tion file. Caffe is packaged with a configuration file im-
plementing the GoogLeNet architecture. GEANT4 sim-
ulation tuned to data using a package called PPFX was
used to simulate the flux in the NuMI beamline. Be-
fore oscillations, the NuMI beam is composed mostly
of νµ with 2.1 percent intrinsic contamination via νe.
It should be noted, however, that the training samples
did not have the same composition as the actual beam.
Neutrino-nucleus interactions were simulated using the
GENIE12 while GEANT413 was used to propagate prod-
ucts of the neutrino interactions through a detailed model
of the NOvA detectors. Custom NOvA simulation soft-
ware converted energy depositions into simulated elec-
tronic signals which correspond to the detector output.

Pixel maps were created to model full detector events
sliced in time to a spill window width of approximately
12 µs. Any detector activity with less than 10 hits asso-
ciated with a neutrino event were discarded as it would
not be enough information generally to provide a positive
ID of the interaction. Distinct categories were created for
each GENIE CC interaction mode: (νµ - charged current,
νe - charged current, ντ - charged current), a category
used for all GENIE NC interactions to give the distribu-
tion of events, and a category dedicated for all cosmic
events. An example of a pixel map can be seen in Figure
7.

12 C. Andreopoulos et al.,The GENIE neutrino monte carlo gener-
ator,Nucl. Instrum. Meth. A614 (2010) 87104

13 S. Agostinelli et al.,Geant4 - a simulation toolkit,Nucl. Instrum.
Meth.A506(2003) 250303
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FIG. 7. . An example of a constructed pixel map which sim-
ulates the detection hits of various events including charged-
current neutrino events, neutral-current neutrino events, and
cosmic events. The goal of the project is to construct a net-
work via machine learning capable of detecting and rejecting
cosmic events.

TABLE I. Data composition of the training samples.

Chunk νµ CC νe CC ντ CC ν NC cosmics CC total
chunk-05 60397 49321 15921 65904 272165 463708
chunk-06 60288 52428 17651 73230 257195 460792

Large levelDB’s were created which needed to be chun-
ked. There were 250 files per LevelDB which corre-
sponded to approximately 470000 pixel maps (over 12000
files available). In the process of training, 80 percent
of the samples were used for training while 20 percent
were used for testing. In this case, 376,000 were used for
training while 94,000 were used for testing. The training
sample for the project consisted of two separate chunks
of levelDB’s consisting of simulated events that were
dubbed ”chunk-05” and ”chunk-06” respectively. This
can be seen in Table 1. For ”chunk-05”, the composition
consisted of 60397 νµ events, 49321 νe events, 15921 ντ
events, 65904 ν neutral current events, and 272165 cos-
mic events. For ”chunk-06”, the composition consisted of
60288 νµ events, 52428 νe events, 17651 ντ events, 73230
ν neutral current events, and 257195 cosmic events. Val-
idation trees were produced with a subset of 250,000 of
the events. I made use of a training system in which 16
images were evaluated per iteration.

VI. RESULTS AND ANALYSIS

In order to determine how well the system was being
trained to identify the difference between cosmic events
and other neutrino events, an analytical graphic known
as a confusion matrix was produced. In my confusion
matrix (also known as an error matrix), each row of the
matrix represents the instances in one of the five classes
identified as:

* νµ charged current- A muon plus a hadronic com-
ponent. One of the main topological features of these
events is the long, low dE/dx track corresponding to the
track of a minimally ionizing muon.

* νe charged current- An electron plus a hadronic com-
ponent. The electron topology is typically a wide shower,
rather than a track, whose dimensions are related to the
radiation length of the detector material.
* ντ charged current - A tau plus a hadronic component.
The tau is extremely short lived and not visible in the
NOvA detector but decays immediately with varying fi-
nal state probabilities that may produce pions, electrons,
muons, and neutrinos.
*ν NC- The outgoing lepton in these interactions is a
neutrino, which will travel onward undetected. Thus,
only the hadronic component of these events is visible,
making their flavor impossible to identified.
*Cosmic events - (Usually) Long muon tracks entering
tops or sides

while each column represents the instances in an actual
class (or vice versa). As depicted in Figure 8, the network
did an excellent job of identifying cosmic events correctly
but it also identified the vast majority of event classes as
cosmic events as well. This network utilized a 34:1 ratio
of cosmic events to neutrino events. This represented a
short-fall of the network, and thus it needed to be trained
in order to identify and differentiate accurately cosmics
from other events.

FIG. 8. . The confusion matrix of the network prior to the
first training. It should be noted that this test network was
severely overtrained to identify cosmic events - it was accurate
in terms of identifying cosmic events but it’s major pitfall was
that it also identified other neutrino events as cosmic events
as well!

Figure 9 depicts the accuracy versus iteration plot of
training the network. The training was conducted over
approximately 90,000 iterations to insure that the net-
work was not over-trained. As can be seen, the test ac-
curacy during training climbs significantly to an accuracy
of approximately 0.76 on a scale between 0 and 1 while
the training loss dropped to approximately 0.4 on a scale
between 0 and 1.

In turn, this yielded the results of the confusion matrix
depicted in Figure 10. The network still retained its ca-
pacity to identify cosmic events correctly and it became
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FIG. 9. The training was conducted over approximately
90,000 iterations to insure that the network was not over-
trained. As can be seen, the test accuracy during training
climbs significantly to an accuracy of approximately 0.76 on
a scale between 0 and 1 while the training loss dropped to
approximately 0.4 on a scale between 0 and 1.

progressively better at identifying the difference between
neutrino and cosmic events. There was an increased ac-
curacy in identifying muon neutrino events more accu-
rately.

FIG. 10. . The confusion matrix yielded after training the
network the first time. It was considered progressively better
than the initial test matrix since it did not identify all of the
events as cosmic events; of note is the increasing accuracy in
identifying muon neutrino events.

Particle identification (PID) plots were generated and
are used to tune selection cuts and calculate the per-
formance of the network. The results are shown in the
figures below.

Below is the PID plot for identifying neutral current
events. A substantial amount of the tau neutrino events
were identified as neutral current events demonstrating
that the network needed to be trained to be more accu-
rate.

Figure 15 depicts the accuracy versus iteration plot of

FIG. 11. PID plot for identification of cosmic events. After
the first iteration of training, the network was able to accu-
rately identify and sort cosmic events as noted by the right
justified region of the histogram plot.

FIG. 12. PID plot for identification of neutral current events.
After the first iteration of training, the network identified
quite a few of the tau neutrino charged current events as neu-
tral current events.

training the network a second time. The training was
conducted over approximately 180,000 iterations which
contributed to the network being over-trained. As can
be seen, the test accuracy during training climbs signifi-
cantly to an accuracy of approximately while the training
loss actually began to climb as well. The test loss was
greater than the training loss and increased as well. This
exhibition of behavior was not ideal for training the net-
work.

Shown below in Figure 16 is the confusion matrix for
the network after the second training. It should be noted
that this network while accurately identifying cosmic
events identified a variety of events as neutral current
events errantly.

Shown below in Figure 17 is the cosmic PID plot for
the second training on the network. As evidenced by the
peak on the histogram on the right side of the graph, the
network in terms of identifying cosmic events has been
tuned.
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FIG. 13. . The confusion matrix yielded after training the
network the first time. It was considered progressively better
than the initial test matrix since it did not identify all of the
events as cosmic events; of note is the increasing accuracy in
identifying muon neutrino events.

FIG. 14. The PID plot yielded after training the network the
first time for muon neutrino events. Considerably, the net-
work became progressively better at identifying muon neu-
trino events but still identified some of the electron neutrino
events as such.

FIG. 17. As evidenced by the peak on the histogram on the
right side of the graph, the network in terms of identifying
cosmic events has been tuned.However, due to over-training,
the network errantly identifies a wide array of neutrino events
as neutral current events. The PID plot demonstrates the 83
percent accuracy in identifying and possibly rejecting cosmic
events.

Shown below in Figure 18 is the cosmic PID plot for
the second training on the network. As evidenced by the
peak on the histogram on the right side of the graph, the

FIG. 15. The accuracy versus iteration plot demonstrating
the second round of training on the network. The network
experienced some over-training which leaves it susceptible to
generalization of the various labels used as identifiers in the
confusion matrix.

FIG. 16. The confusion matrix for the network after the sec-
ond training. It should be noted that this network while accu-
rately identifying cosmic events made the error of identifying
a variety of events as neutral current events errantly.

network in terms of identifying cosmic events has been
tuned.

FIG. 18. The PID plot for neutral current events. Of note is
the 89 percent accuracy in rejecting cosmic events.

Shown below in Figure 19 is the cosmic PID plot for
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the second training on the network.

FIG. 19. The PID plot for identification of electron neutrino
events.

Shown below in Figure 20 is the νµ PID plot for the
second training of the network.

FIG. 20. The PID plot for muon neutrino events.

In order to determine the efficiency of the cosmic re-
jection network, it was necessary to plot the ”cut value”
based on a bin range between 0 and 100 versus the ef-
ficiency in sorting each event. For the network to be
considered successful and ready for implementation, it
was required that greater than 99 percent of the cosmic
events needed to be rejected. The efficiency of νe and νµ
neutrino events has to be greater than 99 percent to be
considered competitive and accurate. Pictured below are
the graphs corresponding to these cut versus efficiency
measurements. For the region corresponding to a cut
greater than 0.9 for the cosmic plot which is needed to
reject the cosmic events, the accuracy is approximately
60 percent. This accuracy does not meet the criteria for
successfully rejecting cosmic events. However, with an
accuracy greater than 50 percent, it does show promise
as an implementable algorithm.

FIG. 21. Cut versus efficiency plot for cosmic events. For the
region corresponding to a cut greater than 0.9 for the cosmic
plot which is needed to reject the cosmic events, the accuracy
is approximately 60 percent.

FIG. 22. Cut versus efficiency plot for neutral current events.

FIG. 23. Cut versus efficiency plot for electron neutrinos.

FIG. 24. Cut versus efficiency plot for muon neutrinos.
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VII. CONCLUSION AND FUTURE WORK

In conclusion, there needs to be continued tuning and
training of the network in order to make it a viable and
integrable tool for the purpose of rejecting cosmic events
for reconstruction of individual neutrino events. The net-
work demonstrates promise as an analytical tool for fu-
ture use.

In the future, plans include utilizing multi-access DB’s
and moving to machine learning packages such as Ten-
sorFlow for future use.
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