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Motivation
Satellite CHANDRA saw a 3.5 keV emission line

while pointed at galaxies outside of our own

This x-ray does not match the emission line of any
known valence shell decay (although a potassium

emission line has come close)

Even if an atomic decay could produce 3.5keV, it is
extremely unlikely that that element is prevalent

enough throughout space to have caused such a

strong signal

Theory suggests that this emission line could result

from the decay of a large sterile neutrino
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Motivation

 |f this large sterile neutrino is the correct
candidate for dark matter, we expect to see a
certain distribution of it when looking in and
out of our galactic plane

 If we can map the incidence of this 3.5 keV
line throughout the cross section of the milky
way, we can verify that it matches the
predicted distribution of dark matter

* This would strongly suggest that the heavy
sterile neutrino is a suitable candidate for
dark matter
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Approach

» To detect soft x-rays with very high
resolution, we will use 2k x 4k CCD’s
and point along the normal to the
galactic plane

* Since the earth’s atmosphere would

filter out the 3.5 keV signal, the CCD

must at least be on a spacecraft in
LEO

« A CubeSat will be employed for this
purpose

2= Fermilab
4 7/26/2018



What are CubeSats?

DIMENSIONS

» Standardized picosatellite defined by
CalPoly

* Low cost provides iterability and ability
to be designed in house

« Standard configuration means there
are many launch opportunities
throughout the year

» 3 year project lifetime as opposed to
10+

* 50% success rate, not great, but pretty
good for amateur/educational
spacecrafts
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Challenges

» Since the CCD’s are so sensitive, they are susceptible to noise and must
be kept below 170 K for an acceptable signal to noise ratio

* The temperature of a CubeSat in LEO can vary from 200-400K across a
90 minute orbital period. This causes thermal strain.

» All onboard electronics must be space rated and/or have shielding from
environmental radiation

« Redundancies must be built into the CubeSat so that a single failure
doesn’t compromise the entire mission

» High resolution can mean high data transfer and downlinking rates, how
do we optimize this?

» Rigorous vibration, thermal bakeout, and COG testing must be passed.
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Mechanical Design

A full mechanical assembly
for the frame of the CubeSat
was created in CAD to allow
us to assess mounting
challenges, fit issues,
approximate mass, and more.

« Several iterations of rail/wall
mounting configurations were
examined before we decided
on a modular bracket system
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Mechanical Design

* Three standardized
custom brackets can be
used to mount any
irregular part to the walls
of the CubeSat

 All off the shelf
electronics conform to a
PC-104 mounting
configuration, where the
parts sit on rails and snap
together
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Payload Components

e 2CCD’s

Beryllium Window

Cooling system
(passive/active)

 Readout boards
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Active Cooling

* Requires input power to actively move
heat

« Best option for active cooling is a
microcryocooler, which keeps the CCD’s
at temp. by cooling an Al cold plate

* Very expensive, both in terms of power
and monetarily

 Thermal strain leads to deteriorated
contact and poor cooling performance

« Consumes significant volume
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1414 W/m? / /

Solar Flux 1414 W/
Plain heat flux does not accommodate Incident 0.35:1414-0.15
Albedo =742 W/m

emissivity/absorptivity of satellite! Earth Flux 260 W/ni



Full flux:

Active Cooling Thermal Analysis
Max 256 K

« Assuming full heat flux due to
Albedo, Planetary IR, and Sun,

7 Input Window  — O X

Material Temperature (K)

CCD’s are only 5K above i o
desired temp with cryocooler Iz
cold tip held at 120K e R

. el - T

G fﬁ f il CCD temp:

« Accounting for reflected heat 165-175K

due to emissivities (PyRad),
the CCD’s reach a peak temp Reflected:
of 165K Max 226 K
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Passive Cooling

13

Uses shielding and material properties to
prevent the CCD’s from getting too warm in

the first place

Cheaper and does not require input power
Limits ability to point in vicinity of sun/earth

due to incident heat
Unreliable and difficult to model
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Passive Cooling Thermal Analysis
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Analysis was pursued at
steady state (ANSYS
mechanical) and through
orbit (RADCad/Thermal
Desktop)

Both softwares rely on a
predicted “initial
temperature”, significantly
throws off results if guessed

Thermal desktop is highly
incompatible with model
level input (STEP/IGES)
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Bus Components

 Readout Boards

« Batteries

« Attitude Determination and Control
— Magnetorquers m :
— Reaction Wheels | —T

« Energy and Power System

 Transceiver

* Antennae

« Main Computer

Each of these components have functional operational

temperature ranges, as well as heat productions/losses.
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Moving forward

« Component analysis of the
thermal effects of the bus

 Vibration simulation to verify
frame integrity

* More passive cooling
feasibility analyses

* Integrated thermal simulation
and experimental validation
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