Acoustic Emission Sensors in Superconducting Magnets

Marcos Araque
SIST/GEM Final Presentation
6 August 2018
Acoustic Emission Quench Detection Sensors in Superconducting Magnets

- Quenching in Superconducting Magnets
- Acoustic Emission (AE) Sensor
- Data Acquisition and Results
Acoustic Emission Quench Detection Sensors in Superconducting Magnets

- Quenching in Superconducting Magnets
- Acoustic Emission (AE) Sensor
- Data Acquisition and Results
Superconducting Magnets

Electromagnets made of superconducting wire

Zero Resistance → More Current → Stronger Magnetic Fields → Higher Energy Beams

SOUNDS GREAT!
Superconducting Magnets

Careful design and maintenance required

- Appropriate stress applied
- Must remain superconducting
- Quench - Sudden loss of superconductivity in part of a coil
Quenching

Factors that cause quenching include:

- Mechanical disturbances (microcracks)
- Electrical disturbances/ faults
- Magnetic field strength/ rate of change
- Defects in magnet

Magnets “trained” to withstand higher quenching currents by gradually increasing operating current (ramp)
CERN says repairs to LHC particle accelerator to cost US$21 million

Wednesday, November 19, 2008

The European Organization for Nuclear Research (CERN) said on Monday that repairing the Large Hadron Collider (LHC) will cost up to €16.6 million or US$21 million.

The LHC, which is the world's largest and highest-energy particle accelerator, is located near the border of France and Switzerland and crosses the border four times. It has a diameter of 27 km (17 miles). It is designed to simulate the conditions shortly after the Big Bang, but it broke down on September 19 due to an electrical failure.

Most of the repair time is covered by previously scheduled maintenance time, and CERN originally hoped to have the machine up and running again by early May. However, CERN officials now believe that it may take until the end of July or longer.

CERN spokesman James Gillies said: "If we can do it sooner, all well and good. But I think we can do it realistically by early summer."

The machine operates at temperatures colder than outer space and must be gradually warmed up for experts to assess the damage, causing much of the delay. CERN expects the repair cost to fall within the annual budget for the project.
Quenching

Quench detection and diagnostic techniques:

- Strain gauges
- Quench antennas
- Coil voltage taps
- **Acoustic Emission sensors**

Sensors trigger heat sink to the magnet to more evenly distribute heat from a quench
Acoustic Emission Sensor

- Quenching in Superconducting Magnets
- Acoustic Emission (AE) Sensor
- Data Acquisition and Results
Advantages of AE sensors:

- Comparable or faster signal detection (millisecond timescale)
- Isolated measurement system external to the magnet
- Negligibly affected by magnetic fields
- Inexpensive

How are they designed?
Engineering Design Process

1. System Requirements
2. Design Schematic
3. Create Printed Circuit Board (PCB)
4. Design Electrical Casing
5. Hardware Testing

Functional Circuit
AE Sensor

Piezoelectric Ceramic
5 mm Inner Diameter
10 mm Outer Diameter

Transducer: converts mechanical stress into an electrical signal (voltage) and vice versa

Entire circuit is designed to optimize this signal
Amplifies signal using MOSFET amplifying circuit
Decouples power signal from AE signal and strengthens output signal
Schematic
Electrical Casing
Electrical Casing (Junction Box)

- Maintains solid, reliable connections
- Protects circuit
- Reduces defects over time
Acoustic Emission Quench Detection Sensors in Superconducting Magnets

Quenching in Superconducting Magnets

Acoustic Emission (AE) Sensor

Data Acquisition and Results
Data Acquisition

Data collection of sensors in 1 dimension:

- 33 x 2 x 1 inch aluminum bar
- AE sensors mechanically screwed in on both ends
- Bar tapped with a hammer at various points
1-dimensional source localization:

Time difference

Velocity of sound in bar

AE source location
Results

- Velocity of sound in bar determined to be 1.989 km/s
- Standard deviation: 2.34 cm
- Standard error: 0.33 cm

Next Steps

1. Conduct 2 dimensional localization
2. Improve sensor/experiment accuracy (COMSOL simulation, more sensors)
3. Test on prototype magnets
Questions?
Collaborations / Partnerships / Members

BOSTON UNIVERSITY

University of Minnesota

LEWIS UNIVERSITY

KANSAS STATE UNIVERSITY

NORTHWESTERN UNIVERSITY

Università di Pisa

PURDUE UNIVERSITY

Rice University

UC Irvine

CERN

NSF

I. 1867

University of Illinois

The University of Chicago

Duke University
Appendix
Circuit on Breadboard
Cryo Amplifier PCB
Coupling Box PCB
Sample Data for 1-D AE localization
References

MOSFET animation: https://upload.wikimedia.org/wikipedia/commons/2/2f/FET-Ani.gif

Transducer animation: https://www.teachengineering.org/content/uoh_lessons/uoh_piezo/uoh_piezo_lesson01_figure1.gif