Suggestions for target selection criteria

<u>Chris Densham</u>, Peter Loveridge, Tristan Davenne, Joe O'Dell, Mike Fitton (STFC Rutherford Appleton Laboratory) John Back (Warwick University)

Science & Technology Facilities Council Rutherford Appleton Laboratory

Neutrino Target 'Optimum' Performance

 To compare a particular design with a reference design:

> $\lambda_{overall} = \lambda_{physics} \times \lambda_{reliability}$, where $\lambda_{reliability} = fn(I, \sigma, ...)$ λ is normalised to 1 for a reference design

- For neutrino flux smaller beam & target is better
- For target lifetime bigger is better.
 - Lower power density lower temperatures, lower stresses
 - Lower radiation damage
 - Lower amplitude 'violin' modes (and lower stresses)
- For integrated neutrino flux, need to take many factors into account
 - E.g. How to achieve best physics performance possible for a target lifetime of a minimum of 1 year?
 - Answer will depend on Beam Power

Chris Densham

1.2 MW Initial baseline 'NuMI/MINOS' style water cooled target

- Water cooled target
- Downstream window and target support must be actively cooled with helium
- Target welded in (horn & target must be changed together)

2m long cyl. target with downstream support

2 x 1m double target concept

- Target cantilevered from each end of the horn
- Outer sheath of the DS target smaller in diameter than the US end due to the tapered shape of the horn.
- More options available for DS target optimisation

Compromise – longest practicable T2K-like cantilever c.1.5m long

Risks with Option C:-1. Manufacture of long target 2. Reliably coupling with down stream support

RAL cylindrical target, r = 8 mm. Beam: p = 120 GeV/c, σ = r/3

If the target is sufficiently short it could be supported as a simple cantilever with no downstream support

A c. 1.5m long cantilevered target appears potentially feasible

6

Hybrid target ideas

E.g. possibility to incorporate Spherical Array Target (from our 2010 study)

Induction furnace tests of packed bed

7

Instantaneous physics performance

Investigations of longer &/or higher-Z material combinations to:

- increase 'right-sign' pion yield
- reduce on-axis 'wrong-sign' pions

Are benefits worth risks?

Comparison of target heat loads: LBNF vs T2K, NuMI, NOvA

	T2K (Design)	T2K (Achieve d)	NuMI	NoVA	LBNF cylinder	
Target Material	ToyoTans o IG-43	ToyoTans o IG-43	POCO ZXF-5Q	POCO ZXF-5Q	ToyoTans o IG-43	
Beam Energy [GeV]	30	30	120	120	120	
Beam Power [kW]	750	350	400	700	1200	
Beam Current [µA]	25	12	3.3	5.8	10	
Protons per Pulse [-]	3.3×10 ¹⁴	1.8×10 ¹⁴	4.0×10 ¹³	4.9×10 ¹³	7.5×10 ¹³	
Cycle Time [s]	2.1	2.5	1.9	1.3	1.2	
Beam Sigma [mm]	4.2	4.2	1	1.3	2.7	
Peak Energy Density in target material [J/g]	144	67	282	174	118	
Peak Proton Fluence on Front Face [μΑ/cm ²]	23	11	53	55	22	

Total and pulsed heat loads lower than that seen on NoVA and NuMi and on T2K design

Science & Technology Facilities Council Rutherford Appleton Laboratory

Draft target selection criteria

LBNF target selection criteria	Weighting		Weighting share	Candidate score				Weighted candidate score					
				Fin/wat 1x2m 2x1m		1.5m cvl/He Hybrid		Fin/wa 1x2m ter cvl/He		2x1m 1.5m		Hybrid	
Physics 1 performance	30	Instantaneous physics performance Upgradeability to 2.4 MW Flexibility re optimisation (materials, beam size etc) Compatibility with beam alignment (hadron vs muon?)	40% 30% 20% 10%	90%	90%	90%	70%	100%	10.8 0 0	10.8 0 0	10.8 0 0	8.4 0 0 0	12 0 0 0
Engineering 2 performance	20	Safety factor = f(stress, temperature) Lifetime, resilience to radiation damage Resilience to off-normal conditions Resilience to beam trips Potential for diagnostics	30% 30% 20% 10% 10%						0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0
Impact on other 3 systems	10	Impact on horn/stripline design Ease of integration with horn Ease/reliability of alignment with horn axis Impact on services/plant Ease of remote handling/disposal Impact on TS design Impact on absorber design	10% 10% 10% 10% 10% 40%						0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0
4 Cost	10	Cost & resource for design/prototyping Cost & resource for manufacture Cost of RH equipment Disposal cost	20% 30% 20% 30%						0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
5 Schedule	10	Time to design Time to prototype Time to manufacture Schedule impact on other systems	30% 20% 20% 30%						0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
6 Risk	20	Design complexity Ease of manufacture Remote handling complexity Departure from known technology Schedule risk ES&H / ALARA issues	20% 20% 20% 10% 20%						0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0
Totals	100								10.8	10.8	10.8	8.4	12