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Chris Densham      

Neutrino Target ‘Optimum’ Performance 

• To compare a particular design with a reference 
design: 

 λoverall = λphysics × λreliability , where λreliability = fn(I,σ,…) 
 λ is normalised to 1 for a reference design 

• For neutrino flux – smaller beam & target is better 

• For target lifetime – bigger is better. 
– Lower power density – lower temperatures, lower stresses 

– Lower radiation damage 

– Lower amplitude ‘violin’ modes (and lower stresses) 

• For integrated neutrino flux, need to take many 
factors into account 
– E.g. How to achieve best physics performance possible for a 

target lifetime of a minimum of 1 year? 

– Answer will depend on Beam Power  
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1.2 MW Initial baseline ‘NuMI/MINOS’ style water cooled target   

3 

• Water cooled target 

• Downstream window and target 

support must be actively cooled with 

helium 

• Target welded in (horn & target must 

be changed together)  

• First iteration optimized 

target design (2m long 

graphite fin target – 4l)  
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2m long cyl. target with downstream support 

Chris Densham 
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2 x 1m double target concept 
• Target cantilevered from each end of the horn 
• Outer sheath of the DS target smaller in diameter than the US end 

due to the tapered shape of the horn.   
• More options available for DS target optimisation 
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Compromise – longest practicable T2K-like 
cantilever c.1.5m long 

If the target is sufficiently short 
it could be supported as a simple 
cantilever with no downstream 
support  
 
A c. 1.5m long cantilevered target 
appears potentially feasible 

Risks with Option C:–  
1. Manufacture of long 
target 
2. Reliably coupling with 
down stream support 
 

J. Back 

CP sensitivity vs 
target length 
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Hybrid target ideas 

E.g downstream 
spherical array –  

E.g. possibility to 
incorporate Spherical 
Array Target (from our 
2010 study)  

2m 

Helium cooling of 
spherical array 
target 

Induction furnace tests 
of packed bed 
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Instantaneous physics performance 

Investigations of longer &/or higher-Z 
material combinations to:  
• increase ‘right-sign’ pion yield  
• reduce on-axis ‘wrong-sign’ pions  
 
Are benefits worth risks? 

3λ C + 2λ Ti 

vs 4λ C ‘NuMI’  

 νµ signal  νµ background 



Comparison of target heat loads: 
LBNF vs T2K, NuMI, NOvA 

  
T2K 

(Design) 

T2K 
(Achieve

d) 
NuMI NoVA 

LBNF 
cylinder 

Target Material 
ToyoTans
o IG-43 

ToyoTans
o IG-43 

POCO 
ZXF-5Q 

POCO 
ZXF-5Q 

ToyoTans
o IG-43 

Beam Energy 
[GeV] 

30 30 120 120 120 

Beam Power 
[kW] 

750 350 400 700 1200 

Beam Current 
[μA] 

25 12 3.3 5.8 10 

Protons per 
Pulse [-] 

3.3×1014 1.8×1014 4.0×1013 4.9×1013 7.5×1013 

Cycle Time [s] 2.1 2.5 1.9 1.3 1.2 

Beam Sigma 
[mm] 

4.2 4.2 1 1.3 2.7 

Peak Energy 
Density in 
target material 
[J/g] 

144 67 282 174 118 

Peak Proton 
Fluence on 
Front Face 
[μA/cm2] 

23 11 53 55 22 

Total and pulsed heat loads 
lower than that seen on 
NoVA and NuMi and on T2K 
design  
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Draft target selection criteria 
LBNF target 
selection criteria Weighting Weighting share 

Candidate 
score       

Weighted candidate 
score     

    
Fin/wat
er 

1x2m 
cyl/He 

2x1m 
cyl/He 

1.5m 
cyl/He Hybrid 

Fin/wa
ter 

1x2m 
cyl/He 

2x1m 
cyl/He 

1.5m 
cyl/He Hybrid 

1 

Physics 
performance 30 Instantaneous physics performance   40% 90% 90% 90% 70% 100% 10.8 10.8 10.8 8.4 12 

      Upgradeability to 2.4 MW     30%           0 0 0 0 0 

      
Flexibility re optimisation (materials, beam 
size etc) 20%           0 0 0 0 0 

      
Compatibility with beam alignment (hadron 
vs muon?) 10%           0 0 0 0 0 

2 

Engineering 
performance 20 Safety factor = f(stress, temperature)   30%           0 0 0 0 0 

      Lifetime, resilience to radiation damage   30%           0 0 0 0 0 

      Resilience to off-normal conditions   20%           0 0 0 0 0 

      Resilience to beam trips     10%           0 0 0 0 0 

      Potential for diagnostics     10%           0 0 0 0 0 

3 

Impact on other 
systems 10 Impact on horn/stripline design   10%           0 0 0 0 0 

      Ease of integration with horn     10%           0 0 0 0 0 

      Ease/reliability of alignment with horn axis 10%           0 0 0 0 0 

      Impact on services/plant     10%           0 0 0 0 0 

      Ease of remote handling/disposal   10%           0 0 0 0 0 

      Impact on TS design       10%           0 0 0 0 0 

      Impact on absorber design     40%           0 0 0 0 0 

4 Cost 10 Cost & resource for design/prototyping   20%           0 0 0 0 0 

      Cost & resource for manufacture   30%           0 0 0 0 0 

      Cost of RH equipment     20%           0 0 0 0 0 

      Disposal cost       30%           0 0 0 0 0 

5 Schedule 10 Time to design       30%           0 0 0 0 0 

      Time to prototype       20%           0 0 0 0 0 

      Time to manufacture     20%           0 0 0 0 0 

      Schedule impact on other systems   30%           0 0 0 0 0 

6 Risk 20 Design complexity       20%           0 0 0 0 0 

      Ease of manufacture     20%           0 0 0 0 0 

      Remote handling complexity     20%           0 0 0 0 0 

      Departure from known technology   10%           0 0 0 0 0 

      Schedule risk       10%           0 0 0 0 0 

      ES&H / ALARA issues     20%           0 0 0 0 0 

  Totals 100                       10.8 10.8 10.8 8.4 12 


