

SSR1 Cryomodule String Assembly

Leonardo Ristori – on behalf of the SSR1 team Slides by Mattia Parise

International Workshop on Cryomodule Design and Standardization BARC, Mumbai 4-7 September 2018

CIP:

Outline

- String overview
- Rail system
- Beamline bellows
- Assembly of solenoid-BPM group
- Nitrogen purging studies
- Recent improvements

SSR1 cryomodule for PIP-II

SSR1 string overview – Rail system

- Completed string ready to roll out of cleanroom
- Rail system is new design adapted for SSR and new facility
- Load, deflection and moving tests all successful

SSR1 string overview – Assembly oriented design

- Dry-run of SSR1 string assembly is carried out on a half cavity string
- The goal is to assess the feasibility of a cleanroom-compatible assembly

- Dry-run of SSR1 string assembly is carried out on a half cavity string
- The goal is to assess the feasibility of a cleanroom-compatible assembly

Fermilab

SSR1 string assembly dry-run – Movable Rail System

Rail system with string weight can be successfully moved to the desired location. The process has been repeated 5 times and final position can be achieved with an uncertainty of ~ 5 mm

Fermilab

Edge welded bellows particle counts

- Edge welded bellows was cleaned and brought inside class 10 cleanroom:
 - 30 min Liquinox (1%) + DI water ultrasonic cleaning at 50 °F
 - 30 min Citranox (2%) + DI water ultrasonic cleaning at 50 °F
 - 30 min DI water ultrasonic cleaning at 50 °F
 - Handheld HPR
- Particle counts of the nitrogen dried bellows approach 0 particles > 0.3 µm in less than 1 minute

3 cycles compression and extension (10 liters sample)			
Time [s]	> 0.3 µm	> 0.5 µm	> 1 µm
7	2	0	0
14	2	1	0
21	3	1	0
28	1	0	0
35	3	0	0
42	1	0	0
49	1	0	0
56	1	0	0
63	1	0	0
70	1	0	0
77	1	0	0
84	0	0	0
91	2	1	0

✓ Particle counts during contraction are acceptable

🛟 Fermilab

Bellows cage is disassembled once the cavity-cavity connection is completed

✓ Edge welded bellows can be successfully assembled and bellows cage can be removed

🛟 Fermilab

✓ Bellows cages provides 2 rotational degrees of freedom at the end flange

Can be splitted in 2 halves so that can be removed prior cryomodule assembly

Solenoid-BPM Group

- ✓ Vertical assembly facilitates handling of components
- ✓ Sub-assembly can rotate 360 degrees for an easy assembly
- ✓ The movable cart allows easy handling of the heavy sub-assembly

Fermilab

Preparation of the SSR1 string assembly dry-run

Preparation of the SSR1 string assembly dry-run

Sub - millimeter precise and reliable alignment

✓ Easy to use system

Link

🛠 Fermilab

Nitrogen purging studies

Nitrogen purging studies

No Nitrogen purging applied

Nitrogen purging at 4 SLPD purge flow speed 0.1 m/s

Nitrogen purging studies

No Nitrogen purging applied

Nitrogen purging at 4 SLPD purge flow speed 0.1 m/s

Experimental setup for purging studies

PIP-II

Nitrogen purging line

- Nitrogen purging line can provide up to 20 SLPM
- Filter is located on the cavity as last element to avoid cavity contamination
- Can be manually operated
- Mass Flow Controller can substitute the metering valve for a reliable soft start

Gate valves particle counts: all metal vs Viton sealed

- Viton sealed
- Pneumatic actuation (<1 sec for opening and closing)
- Viton may degrade due to radiation

- LCLSII ALL-METAL GATE VALVE

- All metal construction
- Manual actuation (~ 5 min for opening and for closing)
- Radiation resistant

Gate valves particle counts: all metal vs Viton sealed

- SSR1 Viton sealed pneumatic actuated gate valve performed better than the all-metal gate valve in terms of particle counts
- SSR1 cryomodule is located at the early stage of the LINAC
- Damaging of the Viton due to beam radiation is limited at this stage
- SSR1 Viton sealed gate valve is compact, generate less particulate, reliable (does not depend on the operator to be actuated) and can be opened/closed in <1 sec

🚰 Fermilab

Low-Temp bake with Space Heaters: a new approach

Quartz fabric Faced Heater

r to vacuum cart

- Able to reach 120°C in 2 hours
- 90% energy efficient
- Can reach 815°C
- Output power can be controlled through cavity temperature
- Cavity never leaves the cleanroom facility

Avoid active pumping: burst disk

With active pumping:

- Connection to the vacuum cart was done in a portable glove box
- 2 days required
- Environment is not ideal for a clean connection

Without active pumping: Burst Disk

- Avoid potential contaminations during the connection and from the vacuum cart
- Installation time into the test cave is substantially reduced

Right Angle Valve (RAV) to cavity connection

- RAV was directly located on top of the cavity beam volume
- High risk of particles generated during valve actuation. Gravity force or bad venting procedure can move such particles inside the cavity beam volume

Summary

- SSR1 String designed with assembly in mind
- String is segmented in sub-systems for particle-free assembly
- Edge-welded bellows a necessary and understood risk
- 6 degree supports for all components
- Nitrogen purging optimized for SSR1 reentrant walls
- Several improvements adopted during R&D and dry-run
- String assembly of pSSR1 CM to start soon!

This work would not be possible without contribution of many people of the powerful SSR I Team!

