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Outline
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• Design changes for proton power upgrade project
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SNS machine layout
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SNS cryomodule design basis

• Cryomodule: similar construction arrangement employed in 
CEBAF (space frame, end-cans, heat exchanger in return end 
can)

• Fundamental power coupler: scaled from KEK 508-MHz coupler

• HOM coupler: scaled from TTF HOM coupler

• Mechanical tuner: adapted from Saclay-TTF design

• Piezo tuner: adapted later on. Integrated into one of legs for 
unexpected large LFD

• Cavity end-group: built with reactor grade niobium
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SNS machine status

• SNS is running reliably at 
or above design spec. 

– Beam power on target: 1.4 
MW

– Beam energy: 1,010 MeV

– Ion source beam current: 
>38mA (achieved 53 mA) 

– RFQ transmission: > 90 %

– Availability: 94 % in FY18

– Accelerator is running with 
much improved margin

– Operation is on track 
according to Target 
management plan

Planned 
maintenance 
day
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Plasma boost to 1 GeV

972 MeV

990 MeV

L
in

a
c
 o

u
tp

u
t 

e
n
e
rg

y
 (

M
e
V

)

September 2018

RF/Control improvement
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SCL operation has been stable and reliable

• Availability last 8 years:
– Whole SCL including RF, HVCM, Control, 

Vacuum, etc.:~98 %

– SRF cavities, cryomodules, and CHL: 
>99%

• Average trip or downtime: <1 trip/day 
corresponding to <5 min./day

• Sustainability for the future
– Developed spare high beta cryomodule

– Developed CHL spare carbon bed

– Developing spare medium beta 
cryomodule

• Improving performance
– Deployment of in-situ plasma processing
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Cavity performance recovery and improvement

• Recovery of cavity performance to previously attained 
operating gradients

– A few cavities in each operating period show a slight performance 
degradation (lower operating gradient slightly, typically 1 MV/m) due 
to beam, electron activities, etc.

– Recovery during maintenance period: RF conditioning and thermal 
cycling

• Improvement to new higher operating gradients by in-situ 
plasma processing

– So far, in-situ plasma processing deployed to 8 HB CMs

– Main driving force to bring SNS beam energy to 1 GeV
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Repairs since FY07

• Instruments (PT, CCG, TC, TD): >100

• Leaks in helium line: ~10

• JT valve actuator: ~20

• Thermal cycling to remove gaseous contamination: ~12

• Tuner repair: >20 (mostly between FY06 and FY13)

• Insulating vacuum repair/upgrade: 10 CMs require pumping

• RF component (water condensation at coupler air side, loosen 
connectors in CM): 3

• HOM couplers: removed feedthroughs from 7 CMs

• Coupler window (10-7 torr l/s scale leak): 4



10

SNS upgrade plans

FutureToday
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built
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today
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• PPU delivers 2.8 MW capable accelerator
− Beam energy 30 % increase 
− Beam current 50 % increase
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PPU SCL scope 

• Increase beam energy from 1 GeV to 1.3 GeV

• Ensure 38-mA (macro-pulse average) beam loading 

• Seven new high beta cryomodule 

– Nine empty slots are available 

– Warm sections and magnets are already in place
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Design specifications

• Lessons learned are incorporated into the design

Parameters
Original SNS high-beta 

cryomodule design

PPU high-beta 

cryomodule
Demonstration of Performance

Eacc (MV/m) 15.8 (14.8*) 16.0
Demonstrated with spare HB 

CM in operation since 2012

FPC rating. Peak, 

Average (kW)
550, 50 700, 65

Demonstrated with FPC 

qualification on test stand

Q0 > 5 × 109 at 2.1 K > 5 × 109 at 2.1 K No change

External Q of FPC, Qex 7 × 105 (±20%), fixed type 8 × 105 (±20%), fixed type Verified on test bench

Material of cavity
RRR>250 for cells, 

RRR~70 for end groups

RRR>250 for both cells 

and end groups

Developed 3 new medium 

beta cavities with RRR>300 

Higher-order mode 

coupler

Two (one at each end 

group)
None

Demonstrated through HOM 

measurement and operation

Tuner
One mechanical tune, one 

fast piezo tuner

1 mechanical tuner (no 

fast piezo tuner)

Demonstrated through 

operation

Pressure vessel Good engineering practice Code stamp required Developed spare HB CM

* Average HB cavities in operation as of Sept. 2018
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Design principles for PPU cryomodules

• Pressure boundary is compliant with 10CFR851
– Conducted internal and external reviews

– Vacuum boundary built to ASME BPVC Section VIII 
(code stamps)

– Helium piping built to ASME B31.3

– All welding conducted in accordance with ASME 
code

– The spare high beta cryomodule was built 
accordingly in 2012: design standard for PPU 
cryomodule

• Interface point are the same as previous 
design
– U-tube connections held constant

– Slot length held constant

– Waveguide connections held constant

– Instrumentation connections are very similar
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Vacuum vessel and end cans

Return End Can
Original Design              New Design

Return End Can
Original Design              New Design

Original Design

New Design
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Design changes - Cavity

• Minor changes will be 
incorporated in the fabrication 
of new PPU cavities: Changes 
demonstrated with new MB 
cavities

– End-group base material will be 
high RRR and not reactor grade 
material to increase thermal 
stability

– No HOM cans are in design, which 
will reduce complexity and 
improve cleaning of cavities

Fabricated 
from high 

RRR Nb with 
no HOM cans
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Design changes – Fundamental power coupler

• Two minor changes for the 
fabrication of new FPCs

– The inner conductor wall 
thickness will increase lead to 
an operating temperature 
below the ones currently in 
operation

– The inner conductor length 
will be reduced by 1.5 mm for 
better matching to the beam 
loading
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FPC inner conductor 

• Original SNS FPC was tested at > 
1 MW during the SNS project

– There’s no concern on power 
handling capability

• PPU requires the FPC to handle 
up to 700-kW peak over a 1.3-ms 
pulse at 60 Hz (65-kW average)

– Increased inner conductor 
temperature would result in higher 
thermal radiation on the end-group

– Thick inner conductor will lead to 
an operating temperature below 
the ones currently in operation

Original 
design
500 kW

Original 
design
700 kW

PPU design
700 kW

: full standing wave

: full travelling wave
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End group thermal stability

• Achievable accelerating gradients of existing cavities are 
limited due to poor thermal conductivity of end-group 

– End-group heating occurs due to electron activity (Field Emission and 
Multipacting)

• Several cryomodules in the Linac have shown sudden large 
increases in JT Valve Position during normal operation 
indicating partial quench in end-group

– Initial seed point thermal load is estimated to be < 1 Watt

– Interaction with stray RF field creates meta stable condition with an 
increased normal conducting region in end-group

– Heat loads to 2-K circuit as much as 40 – 50 W observed
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End-group thermal stability test

• Cavity SNS MB01 with high RRR 
end-groups was tested in the 
Horizontal Test Apparatus (HTA) to 
check thermal stability of FPC 
end-group

– Small area heaters were mounted 
onto the end-group at three 
locations

– Tested performed at design gradient

• An improvement in thermal 
stability by a factor of ten from 
the original cavity simulation 
model for point heat load

FPC end 

group 

stability 

test

Distance of 

heater from 

Helium 

Vessel (cm)

Heater 

Power Cavity on 

Heater 1 13.2 > 3W Stable

Heater 2 7.0 > 3W Stable

Heater 3 2.3 > 3W Stable

3 2

1
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HOM couplers

• During the design phase of the SNS project

– No beam dynamics issues were identified if Qext of HOMs < 108

– HOM induced thermal load was estimated with very conservative assumptions for 
HOM frequency spread and HOM centroid error

• There will be non-zero chance for this concern and decided to have HOM couplers as an 
insurance

• HOM coupler operational problems in the past (MP, detuning, large 
fundamental mode coupling)

– In 2007 HOM spectrums were measured for all installed cavities to verify HOM 
frequency spread and HOM frequency centroid error to simulations

• HOM damping of the SNS cavities is not necessary

• New SNS cavities in the future will not have HOM couplers

• HOM feedthroughs will be removed whenever a cryomodule is taken out for repairs

• So far, 7 cryomodules had HOM feedthroughs removed

• PPU cavities will be fabricated without HOM couplers
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Summary

• Significant testing and operational experience has led to a 
better understanding of systems

– There will be always machine-specific issues and nuisances especially in 
‘first of a kind’ machine: 

• keep design simple, keep enough margin, keep room for upgrade

• Lessons learned for reliable operation and high performance

– Operational flexibility is one of the critical aspects for high availability of 
SNS SCL

• Run with adequate energy margin to shorten downtime

– Balanced performance between all sub-systems, lead to the most 
reliable and efficient system 

• Weakest-link limits overall performance


