
CMS Perspective on WM
Eric Vaandering

�1

CMS Workflow ExperienceVaandering

▪ It’s difficult to discuss workflow management without saying at least something about
data management
▪ The CMS model is to send jobs to data (most of the time).
▪ We have way too much data/too many sites (~60) to ignore this
▪ Very few replicas of most data
▪ Primary data management consists of
▪ DBS (dataset/file catalog, runs, sub-runs, other meta data)
▪ PhEDEx (location metadata and movement system, subscriptions)
★ Uses FTS underneath
★ Replacing with Rucio in 2019-20

▪ Secondary data management:
▪ AAA/xrootd: remotely readable global namespace
▪ Dynamic DM: issues PhEDEx commands to replicate(delete) (un)popular data
★ Also to be replaced with Rucio
▪ Exploring regional caching as well (based on xrootd)

�2

Intersection with Data Management

CMS Workflow ExperienceVaandering �3

WMAgent diagram

 WMStats
Multi-level queue in our
software since workflows
can generate 100Ks of jobs

Request
Manager Global Queue

Local Queue/
WMAgent

Local Queue/
WMAgent

Local Queue/
WMAgent

Local Queue/
WMAgent

Multiple agents can
handle parts of a
workflow, scale out
horizontally

CMS Workflow ExperienceVaandering

▪ WMAgent has a lot of different ways to complete complex workflows
▪ CMS processing is typically multistep in a single workflow. Example:
★ Step 1: produce generated (particle level) MC and simulated (hit level) MC
★ Step 2: produce digitization simulation
★ Step 3: produce reconstructed data
★ Step 4: produce analysis formats (miniAOD, nanoAOD)
★ May or may not want to keep outputs of each of these stages
★ Output from each step is merged to O(GB) files easily stored on tape
▪ Different ways to accomplish this
★ Can run all steps of the process in a single job
– Advantages: easy book keeping for resubmission, reduced # of jobs, reduced merges, can be better matched to HPC/Cloud
– Disadvantages: all code has to be ready at the same time, compatible requirements for each step, parentage after merges
★ Can run each step in a separate set of jobs
– Advantages: see disadvantages above, possible to run steps on different hardware resources (typically not), still asynchronous
– Disadvantages: see above, may merge and store data not ultimately kept, illusory flexibility in job locations

▪ Designed to have processing subscriptions on growing datasets
★ Not exercised, CMS did not need this

�4

Workflow Flexibility

CMS Workflow ExperienceVaandering �5

Sample Workload

Application Step
Application Step
Stageout Step Task/Jobs

Merge task/job(s) Cleanup task/job(s)

Application Step
Stageout Step

Merge task Cleanup task

Application Step
Stageout Step

Merge task Cleanup task

Publish &
Subscribe

CMS Workflow ExperienceVaandering �5

Sample Workload

Application Step
Application Step
Stageout Step Task/Jobs

Merge task/job(s) Cleanup task/job(s)

Application Step
Stageout Step

Merge task Cleanup task

Application Step
Stageout Step

Merge task Cleanup task

Publish &
Subscribe

All defined as a python object

CMS Workflow ExperienceVaandering

▪ Naively you’d expect that the description of multi-step workflows would map well to
Pegasus (based on Condor DAGMAN)
▪ We evaluated it and it’s not well matched
▪ Our merges are based on target file size — no idea how many step 1 jobs feed output to a merge job
▪ We don’t know where are jobs will run until after they start
★ Job 1 and Job 2 of Step 1 may write data at different sites → inputs to different merge jobs
▪ No real need for headline Pegasus feature: automated data movement

�6

Aside on Pegasus

CMS Workflow ExperienceVaandering

▪ Components of WMAgent communicate with a number of CMS services (all REST
based)
▪ SiteDB/Dashboard for understanding grid configuration/site status
★ Migrating to CRIC (nee AGIS), a common WLCG project
▪ DBS/PhEDEx for data discovery (what data is in a dataset, where is it?)
▪ Components that publish data into DBS and subscribe data to their final destination(s)
▪ Have or planning to change out or upgrade all these layers with minimal disruption

�7

Dependent on CMS services

CMS Workflow ExperienceVaandering

▪ Tier0 (near real time processing) is a specialized flavor of WMAgent

▪ Resource provisioning and job execution delegated to HTCondor/GlideinWMS
▪ DAGs are interesting, but not really flexible enough for our workflows
▪ Tell GlideinWMS all the places a job can run, resources needed, it takes care of the rest
▪ Part of “rebrokering” is handled by GlideinWMS: jobs waiting can be overflowed to other sites well

connected (xrootd) to the data
★ Other way is that new locations from DDM can be included before jobs are submitted to GlideinWMS
★ Interest in directly declaring data needed as a job requirement
▪ Plans to enforce overall job limits within GlideinWMS
★ e.g. merge jobs are hard on sites, need to limit the overall # running per site
★ currently managed by restricting number submitted per agent
▪ Resubmissions handled by agent based on return codes (some retried, some not)

�8

WMAgent interactions

CMS Workflow ExperienceVaandering

▪ Workflow planning and checking was major operator overhead (1000s of simultaneous
workflows)
▪ External services and scripts feed work into Request Manager via REST interfaces
▪ McM and Unified used to construct workflows and pre-stage data
▪ Back end checks prior to announcing data is ready, preparing recovery workflows
★ aim to vastly reduce the recovery workflows in next couple of years by incorporating into WMAgent

▪ Request Manager permanently holds request information which can be aggregated
with dataset metadata

�9

Client services

CMS Workflow ExperienceVaandering

▪ Recovery workflows are generated, parameters of the workflow can be changed, and
workflows resubmitted to catch up missed work
▪ The need for these workflows and their frequency is a major pain point for us
▪ Can only be initiated after main workflow is closed out
▪ Can be complicated in the different steps in different jobs case
★ Do you try to re-read needed data or regenerate it? Does it still exist?
★ Parts of the output from several input jobs may be needed as input for one subsequent job

�10

Recovery

CMS Workflow ExperienceVaandering

▪ Second system, similar in design to JobSub, for user analysis
▪ Some underlying code shared with WMAgent
▪ Also reliant on GlideinWMS plus some use of DAGs
★ Jobs go to same global GlideinWMS pool for prioritization

▪ Differences with production system
▪ Package and ship user code to worker nodes
▪ Simpler workflows, better status tracking
▪ User client driven — more interactive
▪ No merging (yet) of outputs
▪ Uses a different data movement system (also based on FTS)
★ Will also be moved to Rucio

�11

Analysis system

CMS Workflow ExperienceVaandering �12

CRAB Architecture

CMS Workflow ExperienceVaandering

▪ User-friendly way to accomplish all needed steps of an analysis
▪ Data discovery (what’s in my data and where is it)
▪ Job splitting (each job runs on a reasonable portion of the data)
★ Atomic unit in CMS is a luminosity section, 23s of data
▪ Configure and run CMSSW (cmsRun) to run on correct files, lumis
▪ Submit jobs
▪ Publish resulting data in data catalog (DBS)
▪ Move data to users’ “local” institution (ASO and FTS)

�13

CRAB tasks

CMS Workflow ExperienceVaandering

▪ Currently keeping around 200k cores busy
▪ Most processing done with multiple core jobs (up to 8)
▪ Most jobs still single core
▪ About 2M jobs/day
▪ More or less 1/2 production, 1/2 analysis
▪ Scale out by horizontal scaling HTCondor Schedd
▪ CRAB — Multiple schedds, one task worker
▪ WMAgent — One agent per schedd
★ Limit from local MySQL database is similar (supports MySQL and Oracle)

▪ Also scaling limits in GlideinWMS Global Pool — beyond what we need now, but being
addressed for the future

�14

Scale

CMS Workflow ExperienceVaandering

▪ A review to determine if CMS is on the right path. Three questions (and likely answers):
▪ Is CMS WM ready for HL-LHC?
★ Most components scale OK (horizontal scale-out or not limited)
★ Heterogeneity of resources is a problem, especially related to target job lengths
– HPC/Opportunistic resources can be best used on “few” hour scale vs. days for grids
★ Not flexible enough now for the constellation of HPC resources (especially connectivity)
★ Evolution of existing tools will be sufficient
▪ Is the split between production and analysis systems justified?
★ Clearly many of the concepts are the same
★ Should explore the same backend, but different frontends (again)
– Users have different expectations in “interactivity”, user friendliness, quick WF execution vs. sheer amount of work

▪ Are there developments outside of CMS that should be considered as a base for workflow management?
★ Will be no recommendation to throw out what we have now
★ Acknowledges that WMAgent arose to solve CMS domain problems. Panda, DIRAC, Pegasus have different emphases

▪ Review will conclude this year (next session later this month)
▪ My take: Still interested in common projects to abstract WF dependencies

�15

CMS Workflow Management Review

CMS Workflow ExperienceVaandering

▪ Backup slides

�16

Backup

CMS Workflow ExperienceVaandering

▪ WMAgent initial development 2009-2011:
▪ Includes Tier0, which is WMAgent based
▪ 6.5 FTE/yr, 20 FTE-yr total
▪ WMAgent maintenance 2012-2016
▪ 3 FTE/yr, 15 FTE-yr total
▪ GlideinWMS development
▪ 2006-2009: 1.5 FTE/yr
▪ 2010-2016: 2.5 FTE/yr
▪ 20-25 FTE-yr total for all stakeholders, not just CMS
▪ CRAB development effort 2013-2016
▪ Another ~15 FTE, now ~2 FTE/yr maintenance
▪ Operational effort for CMS
▪ ~3 FTE for WMAgent
▪ ~3 FTE dedicated to GlideinWMS

�17

Rough estimate of development effort

CMS Workflow ExperienceVaandering

▪ We make light use of DAGMan and heavy use of Glideins
▪ DAGMan is used to separate tasks into job running and monitoring of data transfer,

publication
▪ Glideins to limit execution sites, resources, etc.
▪ US operates in failover mode — jobs waiting for some time redirected to other US sites, data streamed

over xrootd

�18

CRAB3 Condor/Glidein Interface

CMS Workflow ExperienceVaandering

▪ Request Manager
▪ WorkQueue
▪ WMAgent
▪ WMStats (monitor)
▪ ACDC Server
▪ (T0- build on top of WMAgent, T0_WMStats)
▪ (DBS, CrabServer, DAS, SiteDB) – uses some WMCore library

�19

WMCore package

CMS Workflow ExperienceVaandering

▪ Help operation (monitor progress, trouble shooting, etc)
▪ Take request (workflow specification)
▪ Create jobs
▪ Submit jobs (to batch system, GlideIn/Condor)
▪ Track jobs, Retry jobs (job level, workflow level)
▪ Monitor jobs (by workflow)
▪ Archive workflow summary
▪ Archive data/statistics (outside the system – DBS, PhEDEx, Dashboard)

�20

What it does

