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Introduction

When we talk about computing for DUNE what do we mean?

There are a lot of questions

What is the scope?
How does this tie into the physics?

How are the requirements, workflows, techniques different
from....

— Colliders?

— Other neutrino experiments?

— Other physics programs?

How do we begin mapping this out?

How does this connect back to the “projects” we need to start?

2= Fermilab

Norman | Computing & Neutrinos Edinburgh, Oct 2018



The Physics

* Primary mission of DUNE is to constrain/measure 6p
 Why?
— This is the phase that manifestly can violate CP
conservation.

— It is not the phase directly responsible for the matter/anti-
matter asymmetry

« But if it is non-zero, then other related phases can be
the source

* To do this means measuring v,—v, and v,—v, spectra and
looking for deficits.

— This is fundamentally different from most collider
measurements and uses different computing techniques
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Where we are today with 6.p

The best data to date (summer 2018) comes N o F.”ﬁ"'?“.”?.“f
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The Neutrino Data
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Detector is effectively “always on”

— Particles crossing the volume leave
ionization (tracks) with ms scale lifetimes

Very different from collider or fixed targets
Effectively acquire a continuous “movie”

of the activity in the detector e [ | —

— “Frame” corresponds to the drift H B B B EEEE
across the volume SNEESEENENNENANENEENNERERNEENERNEREEE
— Need some way to determine 5 ms 5 ms 5 1ms
which time “slices” to save.
Min-bias/Zero-bias Just takes time region rSasssdsnings llmllll;lllmlnﬁ

“Triggered” readout uses some external/internal system to identify a likely region of
activity to extract (asynchronously) from the systems.

— Photon system detects light, causes readout (semi-traditional)

— Front ends produce “trigger primitives” that can be aggregated (SN trigger)
— Beam signal comes from FNAL

— Other external inputs, other calibration source, etc...

A “trigger” becomes a t, and a At window of interest
3¢ Fermilab
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The Neutrino Data

 Because the data is a movie, it’s useful to talk about the “fraction of total
live” that is recorded.

— Beam spills currently are 10us in length
and occur at ~.83 Hz

« This is 1/120,482" of total live.
« Requiring a full drift makes this 1/240™ of total live
— A supernova readout is 100% of total live

« These are vastly different time scales.
« These are vastly different data volumes.

« Computing needs to be able to deal with the full range.

« Today we talk about a data volume of 30 PB/yr as a design target
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Analysis Path

 How do you analyze this data?

— There needs to be a well defined chain the flows from the
measurements being made (effectively stages of simulation, data
processing, reco, event classification, fitting.)

. — Event Data
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« For neutrinos, we know how to do all of these at some levelt

— NOVA, MicroBooNe, Minos, have demonstrated these for data volumes about
1/10th of DUNE
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Analysis Chain

« So for a “typical” year of data what would this look like?

« Some Assumptions

— Analysis Cycle is 18-24 month
(i.e. tied to Neutrino conferences)

— Target raw rate is 30 PB/yr and runs constantly
(i.e. still runs during shutdowns)

— Shutdowns are annual (12-16 weeks)
— Beam rep gives ~2-2.4E7 spills/year
— Analysis model looks similar to NOvA/Minos
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Simulation vs. Data processing

Incident neutrinos are invisible
(we only observe the interaction not the actual particle).

— But oscillations are driven by their energy

« Knowledge of the incident spectra are driven by simulation
— Highly dependent on hadron production

« Knowledge of the interaction are driven by simulation
— Highly dependent on nuclear models

* Knowledge of the detector response are driven by simulation
— Highly dependent on external data

- All neutrino measurements require high Monte Carlo to Data ratios
— Typical is 10:1 with goals of 50:1 and 100:1
— With reuse some experiments are getting 20:1 currently

2= Fermilab
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Data Processing

- Raw data is big (~30 PB/yr) but the processing models typically only spin
through the lowest stages of its processing one time.

— The first “raw2root” stage is the most 10 intensive, but is typically
done in a “keep-up” mode

— Prior experiments have had very stable first stages

« NOVA has to date not changed or re-run the keep-up. (this would
require the restaging of multiple petabytes of data from tape)

« Possible because algorithms were specifically decoupled from
early stages (i.e. no hit finding, tracking)

— For DUNE this may not be the case.

 Hit finding and noise suppression are needed to reduce the event
data size down from 6.2 GB/evt

* May result in a need for respins of raw data

— Hit dropping is NOT currently performed by most experiments (they try
to preserve all hit info for ML applications)

 DUNE may not have this luxury
2¢ Fermilab
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Reconstruction

* Reconstruction is tricky.

— To understand what reco needs to do accomplish, you
need to understand the measurements

* Reconstruction is also very expensive to run
— Typical LAr reco takes 10’s of minutes per event

— Driven by the complexity of the events and raw hit
multiplicities -- many algorithms are worse than O(N?)

— Machine learning exacerbates this

2= Fermilab
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The Analysis

* Neutrino Oscillation analyses
are about classifying three
topologies, v,-CC, v,-CC, v-NC

e Vu u-ov

« Estimating the energy of the
iIncident neutrino

« Counting in bins of energy how
many of each type we see

Selected v_-CC Topologies

2% Fermilab
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Measurement Technique

 Measure near detector neutrino
spectra and predict the far detector
spectra before and after convolution
with an oscillation model.

» Fit for the oscillation model parameters
using a likelihood method and determine
the confidence intervals for the
measurement.

« Key is that neutrino energy must be
reconstructed and that event types are
classified correctly

» Shape fits across very large spaces
* Current fits are

NOVAFD  8.85x10% POT equiv v + 6.9x10%° POT ¥
T T T T

3
60+ parameters &:25;— \/\/
S 2:_
 Limited by %1.55—
observables and < o ity
free parameters o e\

P
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Classifying Events (Traditional)

« Traditional Event classification relies on individual
particle recognition and reconstruction

« Computationally:
— Clustering/Pattern recognition algorithm
— “Fitting” algorithm (for track-like objects)
— Vertexing algorithm
— Energy estimator algorithm (per particle)
— Energy estimator algorithm (global)
 Then

— Run all the kinematics through a series
of selection cuts

— ANN, BDT or other multivariate selection

* Works well....when you can reconstruct
ALL particles

« But...LAr events have such high hit multiplicities
and low energy “stubby” tracks (deltas) that this
doesn’t always scale

2% Fermilab
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Classifying Events (Deep Learning)

What if you didn’t have to actually disentangle particle by
particle?

 Instead you classify each event as a whole based on image
recognition technology

— This is the Convolutional Visual Network (CVN) approach
first used by NOVA in 2016.

— It achieves a 30% higher signal efficiency

 Effectively you need to through out less of your data
due to un-reconstruct-able particles

— Comes at a cost
* Requires GPUs, special computing, etc

e Here’s how it works
2% Fermilab
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Image Filtering

« Traditional Image Filtering is convolution with a given kernel.
— Reduces to a series of matrix multiplications

XY Kernels
-1 0 1 1 2 1

-2 0 2 0O 0 0
-1 0 1/ \-1 -2 -1

Horiz Edge Vert. Edge

 Goalisto find a series
of kernels that “sees”
different neutrino
Interactions

2% Fermilab
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Neutrino Detection Kernels

..n.....These are made
...'.... by the machine
through convolutional
. .... n'. network training.
......n. Requires GPUs.

NOVA Convolution Kernels Kernels for Neutrino Detection (2017/2018)
2F Fermilab

Large University
resources currently.
Targeting HPC
facility's in the 2020’s
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Convolutional Networks & Deeplearning

« Train through a neural network, so that the network learns which kernels
are important to a signal/background sample

— Feed back in and let the kernels vary so that the features maps
become tailored to the problem

v ~-CC interaction
and resulting
feature maps

80

70

Training requires GPUs j Ems S

60

AT

evaluation on events is near .|

constant time and reduces s —=~"" | —> B
to large matrix T | = =
multiplications f . EEEEE
(ideal for HPC environ.) L == =mr
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Selection Space

v, NC

1v, CC

4, cc

Al
v, CC

Different interaction topologies cluster in the selection space
aF Fermilab
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Or for particle reconstruction

« Semantic Segmentation (i.e. pixel by pixel deep learning)

EM / track separation: examples of ProtoDUNE events

ProtoDUNE simulation,
LArSoft

- i
2.5 GeV/c {

: Works to separate out
individual tracks and

showers.

Allows better energy
estimators

CNN output: MC truth:
EM-like (blue) / track-like (red) EM-like (green) / track-like (red) Need Combo

input: 2D ADC

Event displays: R.Sulej, Connecting The Dots / Intelligent Trackers, May 2017, LAL-Orsay, France

GPUs/CPUs at large
scales

2% Fermilab

21 Norman | Computing & Neutrinos Edinburgh, Oct 2018



Reco + Event Selection

« After reconstruction you have higher level quantities that can be used to
select samples

« This allows for the creation of “reduced” or “n-tuple” style analysis files.
— Typical reduction of 100x—1000x in data size.
— Example: NOvA 13 PB (raw+sim+MC) -> 25 TB of CAF

* These n-tuple files are run over repeatedly

— This stage ends up consuming more resources than initial processing

— Also scales w/ systematic studies (i.e. each systematic requires it’s
own set of reco/tuple runs)

2% Fermilab
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Result

« Eventually....After applying your standard
and ML techniques, you have a normalize

selector suite

* You classify your
data AND you
have to predict
your spectra from
your Monte Carlo
and background
samples

Events / 0.5 GeV Bin

« Monte Carlo and
background samples
(data driven) dominate
the computing budget
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The Experimental Observation

* You observes v, appearance and v, disappearance
NOVA Preliminary
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NOVA v, appearance spectrum as a function of Reconstructed Neutrino Energy (GeV)
observed energy
NOVA v, disappearance spectrum as a function

of observed energy for quantile 1
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25
Parameter Estimation

* Once the observation is made, the actual physics extraction requires a

solving of the inverse problem.

— The inverse problem is actually very hard...but...

. o 5 gx10° .A).(z.
» To first order this is easy l | | 1 g
— Just fit your results using N 118
some likelihood function v [ 17
2 ® I 6
and get a y= surface...goto o 0al 5
your Erf table..... Z 0 4
Al
draw a contour T Lol 3
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Guassian Contours

 These are the baseline results

Normal Mass Hierarchy

sin? 923

Anf

* They may be wrong (very wrong)
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27
Parameter Estimation
« But you need to profile or marginalize over nuisance parameters....

« Understand how correlated your systemmatics really are
« Take into account over/under coverage near physical boundaries

0.7

* In general you
need to simulate e rrrreres
gausian variations EE L el
in your parameters
and Monte Carlo
integrate to find o
corrections your A | , ‘
coverage contours : ’

* In “multi-universe” .
approaches this can I l

0.5

-0.5

consume mllllons Of : ----- Gaussian —— Feldman-Cousins INormal Hierarchy 8
H H H § 2 2 2 | 2 y y y [ 2 2 2 2 2 2 2 y
calculations per grid point 0.3; p— p 371/2 >
« This one step = all previous Feldman-Cousins correction s@ffaces in units of 42 for the 20

computation (95%) confidence bands in §cpand Am?;,. The 1,2, and 3 o
Gaussian contours (dashed lines) are shown along with the

— Solving the analysis at each statistically corrected contours (solid lines).
point in a multi-dim space
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The Result
« Ultimately you get this:

NOVA Preliminary NOVA Preliminary NOVA Preliminary
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« Each contour represents ~ 30-50M hours of computing when integrated
across each stage. (excluding GPU training)
— Full long baseline analysis is 200-300M hours of CPU

— This is spread in across multiple years of calendar time

— Typical cycle is 2 years for data, 3-4 years for MC

(i.e. MC is partially reused)
a¢ Fermilab
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Take aways...

« Each stage of analysis is similar in “cost”
— Each stage is different in the type of cost
« Some are high 10, others CPU, others GPU
— i.e. there is no single dominate item (so no silver bullets)

* Most expensive stage currently is reconstruction
— Expect this to get more costly as new tech is used
« But...driving stage is user level analysis & systematics
— Effectively duplicates the chain for each variation
— Most potential for requiring re-reco/alternate reco

» Final analysis stages are extremely expensive
2¢ Fermilab

29 Norman | Computing & Neutrinos Edinburgh, Oct 2018



The 2020+ Era

,,,,,,,,,,,,,,,

« How will we do this?

« Single technology solutions won’t work
— Need hybrid approach:

CORI and Edison
Supercomputer at

grid + GPU + HPC + ??? NERSC were able to
reproduce the 4-week
 Traditional grid resources long 2017 NOVA

Analysis in a few hours

are needed for initial data processing

e GPUs are needed for
ML techniques

« HPC are needed for
large scale selection/fitting/sim

e For DUNE this will work.

— | I Over a million cores on CORI and Edison were
DU N E IS a green fleld provisioned and run through the HEPCloud facility in
_ We can dO What we need tO dO two analysis runs in May 2018.
2= Fermilab
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The future
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