# Scaled Superconducting Nanowire Detectors in Photonic Circuits

#### **Hong Tang**

Yale University, Dept. of Electrical Engineering, New Haven, CT, USA



#### **Desired features of single-photon detectors:**

- high detection efficiency
- low dark count rate
- high speed
- high timing accuracy
- sensitivity from VIS-MIR
- many of them!





## Superconducting single-photon detectors





Dorenbos, TU-Delft (2011)

- meander of nanowires fabricated from 4nm NbN thin-film
- active area ~ 10x10  $\mu$ m, nanowire widths ~100nm
- absorb photons under normal incidence from optical fiber
- cool below critical temperature (Tc = 11K)
- dc-bias close to critical current (Ic =  $10-30\mu$ A)
- ~ 20% single pass absorption efficiency





#### SSPD fully integrated with nanophotonic circuitry



NbN on Si:

*W.H.P. Pernice et al.,* Nat. Comm. 3, 1325 (2012)

*Schuck et al.,* IEEE Trans. ASC 23, 2201007 (2013)

NbTiN on SiN:

*Schuck et al.,* APL 102, 051101 (2013) *Schuck et al.,* 

Sci. Rep. 3, 1893 (2013) Schuck et al., APL 102, 191104 (2013)



### Waveguide micro-SSPD: NbN on Si waveguide





W. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, H. X. Tang, Nature Communications, 2012

#### **Travelling wave design**

- Waveguide coupling allows for absorption engineering
- Plasmonic coupling of NbN wire to evanescent waveguide mode





#### Jitter

- Jitter = 18.4ps
- 5.8mm Ring, Propagation loss of 4dB/cm
- Decay 37ps => round trips are observed





#### ČPĂD 2018

## Efficient photon absorption on-chip





## NbTiN-SSPDs on SiN waveguides







## **Detection efficiency: 768nm**



Detection efficiency  $\infty$  hotspot size ( $\infty$  photon energy):

saturation @ 80% when hotspot diameter ~ nanowire width

## Detection efficiency: 1542nm



Optimize nanowire geometry for optimal performance:

decrease nanowire width & increase length: 68% OCDE @ 99% Ic

### Low dark count rate



**CPAD 2018** 





DCR: 1-100mHz (60%-99% lc)

1.6K: decoherence mechanisms are suppressed below stray light-level!

## Low noise equivalent power





| 768nm (on-chip)               | 1542nm (on-chip)              | 1542nm (system)               |
|-------------------------------|-------------------------------|-------------------------------|
| 2x 10 <sup>-20</sup> @ 65% lc | 7x 10 <sup>-20</sup> @ 94% lc | 8x 10 <sup>-18</sup> @ 95% lc |

### **Detectors for integrated photonics**



#### Applications:

#### - integrated quantum optics

- quantum cryptography
- sensing (optical time domain reflectometry)
- spectroscopy & biomedical applications

**Scalable** quantum information processing needs efficient interfaces between source circuit & detectors.





# Building a HOM interferometer on a chip





Two detectors + 1 Beam Splitter



## **On-chip HOM with integrated detector**



#### HOM + 2 SSPD device







## HOM + 2 SSPD device



## **Optical Time Domain Reflectometry**



# **Optical Time Domain Reflectometry**



OTDR: Diagnose physical condition of a (long) optical fiber in situ.

- $\rightarrow$  localization of defects
- $\rightarrow$  fiber loss & attenuation properties
- $\rightarrow$  refractive index changes



# **Optical Time Domain Reflectometry**



Advantages SSPD vs. APD:

Iower detector noise (NEP) free-running (no gating) Iarger dynamic range

no afterpulsing, charge persistence effects, deadzones



## OTDR: dynamic range





## TEM analysis of NbTiN detectors





## Nano-SSPD





### Detector scaling to nano-SSPD



Absorber design – Jitter consideration

#### 100fs

- = Light transits 30um in free space
- = Electrical signal propagation time in 1um wire
- To achieve better than 100fs jitter, we need to absorb all the light in 1um travel distance
- → Cavity lifetime < 100fs, or Q < 20

Absorber design – efficiency consideration

Quantum efficiency > 99% requires

- Need 20dB absorption within 1um length, or 20dB/um
- No design can achieve such fast absorption  $\rightarrow$  cavity is required
- Absorption in a cavity:  $\alpha LQ > 20dB$
- Considering L < 1um,  $Q < 20 \rightarrow \alpha > 1dB/um$



## Pathway to get 1dB/um absorption rate







60nm\*6nm NbTiN on suspended GaAs waveguide with different thickness

Best results: **3.7dB/um** for TM 2.3dB/um for TE



#### High efficiency suspended GaAs waveguide





#### Integrated detector readout











P. Ravindran, R. S. Cheng, H. X. Tang, J. C. Bardin, Optics Express, to be published.





#### Powered by superconductor/photonics co-integration

#### □ Waveguide integrated micro-SSPD

- Detector length ~10um: high efficiency, speed, low jitter
- Integration in quantum photonic circuits
- v-ODTR

#### □ Waveguide integrated nano-SSPD

• Detector length ~1um, promising even higher speed

#### Detector semiconconductor chip integration

• Higher scalability, High counting rate



## Can we photodetect microwave photons?







L. R. Fan, C. Zou, R. Cheng, X. Guo, X. Han, Z. Gong, S. Wang, H. Tang, Science Advance, 4, 4994 (2018)

#### Photodetect microwave photons

- Detection is already quantum limited
- No need for squid or JPA
- Current efficiency 2-26%
- Projected efficiency limited by coupling loss

# Thank you!



Risheng Cheng

Carsten Schuck (Assistant Prof., University of Munster), Xiaosong Ma (Professor Nanjing University), Wolfram Pernice (Professor, University of Munster)

<u>Collaborators:</u> Joseph Bardin (UMass), Zubin Jacobs (Purdue)

Funded by: DARPA (DETECT), NSF, Packard Foundation