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Yy Extending Si quantum image sensors (QIS) to IR and UV regimes via
monolithic integration of other absorbers on Si

Yy Leaping to quantum mechanical capacitive coupling to minimize the
timing jitter and maximize the data rate of SPDs
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®» A Overview of NorAvalanche Photon Counting in SI Quanta Image
Sensor (QIS) Using Capacitive Coupling
A Towards Spectral Response Extension of QIS
- Hot-electron UV/IR detectors on Si using metallic/2D absorbers
- Integration of GeSn semiconductor IR absorbers on Si
A Towards Quantum Capacitive Detectors (QCPS)

- Design of IHV QD QCP model system towards 10 m\@denversion gain
and subpsintrinsic response time.

- Outlook towards DIREG#&avefunctionmeasurement using QCP concept
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Principle of Non -Avalanche, Capacitively
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Each subwavelength pixel is
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A Most existing semiconductor SPDs rely on avalanche gain, i.e. amplifying

photocurrent |
A With the scaling of Si CMOS, quanta image sensors (QIS) has enabled room-
temperature SPD by minimizing capacitance to achieve significant voltage gain
for a single photoelectron transfer (pVV =/€ (~0.4 mV/e for 65 nm technology node),
well exceeding the voltage noise level of ~0.1 mV from the source follower (SF).

Ma andFossum 2014EDM, 2015 JEDS, 2015 EDL
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A Photoelectrons collected in a storage well
(SW) and transferred to floating diffusion

(FD) by switching the transfer gate (TG)

A The ultra small capacitance of FD and the

minimization of overlap capacitance A L4umpitch

between different regions achieves C~400 |§ A-32%32 jo arraysx
. , (45x45un)
aF using 65 nm CMOS node, enabling a R No avalanche
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Ma andFossum 2014EDM, 2015 JEDS, 2015 EDL
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Photon counting in visible spectrum
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A Ma et al. Optica4 (12),14741481 transfers photoelectrons
Metallic UV absorber (2018)

to Si QIS for IR

transfers hot electrons imaging/sensing
blind UV detection

A Si QIS achieved room temperature photon counting with 0.21 e read
noise and <0.1 e”/s dark count rate

A How can we ride on the wings of Si QIS via facile integration of UV and IR
absorbers on Si to extend the response spectra?
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Applications of Solar Blind UV
Detection
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Regular cameras need long exposure at nigholarblind UVimage sensors can detect the

to see the corona dischargeunder sunlight

A Solar-blind and visible-blind UV detection specifically at | =200-300 nm has
wide applications in flame detection, combustion monitoring, and
discharge detection (e.g. powerline inspection)

A Wide band gap semiconductor photodetectors (AlGaN, diamond) hard to

growth and integrate with Si readout.

A UV bandpass filters on Si PDs limited by narrow bandwidth, high
transmission loss (8-10 dB) and low IQE due to surface recombination.




Hot - Electron Nanophotonic MOS

Structure for Solar

-Blind UV Detection
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Wang et al ACFhotonics 510), pp3989%¢3995 (2018)

A A metal/oxide interfacial barrier >3.8 eV substitutes wide gap

semiconductors for solar-blind UV detection

A Overcoming the low efficiency of hot electron Schottky PDs by selecting a
semimetal (Sn) with high density of states near the Fermi level.

A Sn nanostructures to enhanced UV absorption within the hot electron
mean free path (~50) nm from the metal/oxide interface




Strong UV Detection from Pseudo - @ Tuavsa scnoot of
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A Self-assembled Sn nanodots form pseudo-periodic structures.

A ~75% UV absorption at | =200-300 nm for 40 nm max thickness.
Agrees with theoretical modeling and facilitates ballistic transport of hot
carriers.




Solar -Blind UV Detection Using Hot -
Electron Sn/SIO ,/n -Si MOS structure
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A ~30 mA/W responsivity at | =269 nm, or 18% internal quantum
efficiency. >10x better than hot-electron metal/semiconductor
Schottky photodetectors. UV selectivity ~103 -10%vs. visible light.

A Oxide quality could be further improved to enhance efficiency.
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A Can be integrated with QIS using back-end-of-line CMOS processing if
the thermal oxide is substituted with ALD oxide.

A Can be extended to IR detection by adjusting metal/oxide barrier height
A Can be extended to 2D absorbers such as graphene
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A Optical absorption of single layer graphene (SLG)~2% independent of
wavelength

A Scatterer+cavity structure can achieve strongly enhanced light absorption
of >40% in SLG

A Absorption enhancement spectra range tunable with cavity design.

In collaboration with Prof. Jing Kong, Dr. Yi Song and Mr. Haozhe Wang at MIT
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Photon Management in Graphene for @ THAYER scrOoL OF

Broad -Band Hot -Electron IR Detectors
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A Scatterer+cavity structure can achieve strongly enhanced light
absorption of >40% in SLG
A Absorption enhancement spectra range tunable with cavity design.

A Confirmed by optical spectroscopy and field enhanced Raman
experimentally.

In collaboration with Prof. Jing Kong, Dr. Yi Song and Mr. Haozhe Wang at MIT
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