Caltech

Searching for New Particles and Forces with Polar Molecules

Nick Hutzler Caltech

An Asymmetric Universe

- The universe is made out of matter
- There is no free anti-matter in the universe
- Problem: all known physical laws treat them equally!
 - Where did matter come from?
 - Where did anti-matter go?
 - There must be processes that favor matter over anti-matter
- Baryon Asymmetry of the Universe (BAU)

CP Violating Observables

- The BAU requires new CPviolating physics
 - Leads to CPV observables at low energies
 - (Also high energies)
- Classic example: permanent electric dipole moments (EDMs)
 - The existence of EDMs requires CPV
 - Other moments as well
 - I will use "EDM" to mean generic CPV electro-magnetic moments
 - Generically sensitive to new CPV physics

EDMs violate symmetries

EDMs violate P, T, CP*

Measuring EDMs

- An EDM experiences a torque in an electric field
 - This torque causes the spin to precess
- Experiment:
 - Initialize spin
 - Precession in electric field
 - Measure spin
 - Repeat...

Sensitivity

• Experimental observable is angle φ (phase)

Electric field?

- Atoms/molecules have extremely large fields
 - $e/4\pi\epsilon_0 a_0^2 \sim \text{GV/cm}$
 - Relativistic ~Z³ enhancement
 - 10-100 GV/cm for heavy species
 - Maximum lab field ~100 kV/cm
- Permanent EDM causes splitting of energy levels
 - Induces permanent EDM in atom/molecule

$$H = -\vec{d} \cdot \vec{\mathcal{E}}_{int}$$

$$\frac{1}{|\downarrow\rangle} \qquad \frac{1}{|\uparrow\rangle} \qquad \frac{\vec{d} \cdot \vec{\mathcal{E}}_{int}}{|\uparrow\rangle}$$

Polarization

- Problem constituents experiences zero average field!
 - Atom/molecule states always have this symmetry in free space

Solution: polarize

- Apply lab field to orient atom/molecule
- Interaction no longer averages to zero
- Sensitivity ∞ polarization P

Atoms vs. molecules

- Atoms
 - △ ~ 10-100 THz (electronic)
 - P ~ 10⁻³ @ 100 kV/cm
- Molecules
 - Δ ~ 10 GHz (rotational)
 - P ~ *C*(1) @ 10 kV/cm
- "Molecules are 1000x more sensitive"
- Some molecules have parity doublets, ∆<10 MHz</p>
 - Enables full polarization in small fields... and more!

Atoms Δ ~ 100 THz

Molecules $\Delta \sim 10 \text{ GHz}$

Parity
Doubling
∧ ~ 10 MHz

Internal Comagnetometers

- Parity doublets enable full polarization in the lab
 - "Internal comagnetometer"
 - Measure CPV in each state
 - Sensitivity equal/opposite!
 - Non-CPV effects cancel
 - Suppresses important systematic effect
 - Additional suppression from smaller fields
- Requires particular electronic structure
 - Arises from coupling between electron L and molecular rotation

Molecule State of the Art: ACME

- Harvard/Yale Collaboration
 - DeMille, Doyle, Gabrielse
- Molecular beam spin precession in ThO
- Combination of several new ideas and techniques
 - Cryogenic buffer gas beam
 - Internal comagnetometers
- Current best limit on the electron EDM (2nd gen.)
 - $|d_e| < 1.1 \times 10^{-29} e cm$
 - Statistics limited
- Already probing the TeV scale – beyond the LHC
 - >10-100 M_{higgs}

Where can we improve?

Shot noise limited sensitivity

$$\delta d_{\rm e} = \frac{\hbar}{2\mathcal{E}_{\rm eff}\tau\sqrt{N}}$$

Traps can have $\tau > 1$ s...

Beams have $\tau \sim 1$ ms

Where we are going...

- 10⁶ molecules
- 10 s coherence
- Large enhancement(s)
- 1 week averaging

Heavy, polar molecule sensitive to new physics

Where we are going...

- 10⁶ molecules
- 10 s coherence
- Large enhancement(s)
- 1 week averaging

 $M_{\text{new phys}} \sim 1,000 \text{ TeV (!)}$

Heavy, polar molecule sensitive to new physics

Where we are going...

- 10⁶ molecules
- 10 s coherence
- Large enhancement(s)
- 1 week averaging

 $M_{\text{new phys}} \sim 1,000 \text{ TeV (!)}$

Heavy, polar molecule sensitive to new physics

...but how do we get there?

Quantum Control with Atoms

D. Barredo *et al.*, Nature **561**, 79–82 (2018)

T. G. Tiecke, *et al.*, Nature **508**, 241 (2014).

A. Mazurenko *et al.*, Nature 545, 462-466 (2017)

Quantum Control with Molecules?

Laser cooling/trapping

- Lasers can be used to cool and trap < mK gases
- Important driver of many quantum techniques
 - Quantum information, quantum devices, synthetic quantum matter, fundamental chemistry, sensing, ...
- Claim: only (proven) suitable method for us

- Requires many (~10⁴⁻⁵) cycles of absorption, spontaneous decay
- Decay to other states stops the cooling process
- Internal vibrational, rotational levels are excited in decay

- Requires many (~10⁴⁻⁵) cycles of absorption, spontaneous decay
- Decay to other states stops the cooling process
- Internal vibrational, rotational levels are excited in decay

- Requires many (~10⁴⁻⁵) cycles of absorption, spontaneous decay
- Decay to other states stops the cooling process
- Internal vibrational, rotational levels are excited in decay

- Requires many (~10⁴⁻⁵) cycles of absorption, spontaneous decay
- Decay to other states stops the cooling process
- Internal vibrational, rotational levels are excited in decay
- For carefully chosen molecules, this is manageable!

Electronic Structure for Laser Cooling

- Generally works for molecules with single, metal-centered s orbital
 - Alkaline-earth (s²)
 - Single bond to halogen (F)
- Orbital hybridization pushes electron away from chemical bond
 - Decouples electronic structure from molecular excitations

Incompatible Features

Internal Comagnetometers

- ThO, WC, TaN, HfF+, ...
- "Requires" L_{elec} > 0
- Interferes with laser cooling

Only in diatomics!

Laser Cooling

- YbF, BaF, RaF, TlF, ...
- "Requires" L_{elec} = 0
- No internal comagnetometers

Polyatomic molecules

- In diatomics, full polarization and laser cooling conflict
- In polyatomics, these features can be decoupled
 - Laser cooling, new physics sensitivity via metal
 - Polarization and comagnetometers from ligand (with >1 atom)

l-doublets

- Example: linear triatomic
- Three mechanical modes
- Bending mode is doubly degenerate
- Eigenstates have orbital angular momentum
- Coupling of ℓ to rotation gives rise to parity doublet!
 - Typical ~ 10 MHz
 - Independent of electronic structure!
- Symmetric tops even better? (K-doubling)

Laser cooling polyatomics

- Laser cooling still works!
 - Electron wavefunction really is decoupled from bond
 - Still looks like single, metal-centered electron
 - Essentially any monovalent, ionic bond
- Recently demonstrated
 - SrOH I. Kozyryev, et al., PRL 118, 173201 (2017)
- Readily created
- Lots of spectroscopy

T. A. Isaev and R. Berger, PRL **116**, 63006 (2016)

Pathway to PeV Physics

- Realistic pathway to PeVscale physics
- General approach, applicable for many measurements
 - Electron EDM:
 YbF → YbOH, BaF → BaOH, ...
 - Nuclear Schiff:
 TIF → TIOH, RaF → RaOH, ...
 - Nuclear Anapole:
 BaF → BaOH, ...
 - Ion trap searches: RaOH+, ThOH+, ...
- Lots of new directions!

Feature	Polyatomics
Laser cooling	✓
Full polarization	✓
Internal co-mag.	✓
>1 s lifetime	✓
Scalable (Large #)	✓

I. Kozyryev and NRH Phys. Rev. Lett. 119, 133002 (2017)

YbOH

- YbOH is ideal candidate for first experiment
 - Existing preliminary spectroscopy
 - Recent additional spectroscopy
 - Good CPV sensitivity
 - Laser coolable
 - Multiple stable isotopes
- Sensitive to hadronic and leptonic CPV
 - ... and more!

Nuclear MQM

- Nuclear magnetic quadrupole moments are sensitive to hadronic CPV
 - Nucleon EDM
 - quark EDM/chromo-EDM
 - CPV nuclear forces
 - Strong CPV (θ_{QCD})
 - **-** ...
- Orthogonal to eEDM
 - Current eEDM molecules are not sensitive
- Quadrupole deformation (β_2) enhances MQM
 - Collective enhancement
 - Ta, Yb, Hf, Lu, Th, ...

Rotating EDM produces MQM

¹⁷³YbOH NMQM Experiment @ Caltech

- Building a NMQM search in ¹⁷³YbOH at Caltech
 - ¹⁷³Yb (I=5/2), highly deformed
 - Cryogenic buffer gas beam experiment
 - Laser cooling, trapping in future generations?
- Construction underway!
 - We have a YbOH beam
 - Currently optimizing and characterizing

Polyatomic eEDM Experiment

- Electron EDM search in laser cooled and trapped
 174YbOH
- ¹⁷⁴Yb (I=0), simpler structure
- Just getting started!
 - NRH @ Caltech
 - John Doyle @ Harvard
 - Tim Steimle @ ASU
 - Amar Vutha @ Toronto
- Goal: explore PeV-scale fundamental symmetry violating physics
- Stay tuned!

The Group, Fall 2018

A Future Direction: MFOCCs

- Why not make ligand optically active?
 - Enhanced optical forces
 - New state preparation/readout approaches
 - More co-magnetometry
 - Access to non-cycling species
 - ...
 - New avenues for quantum control!
- Molecules Functionalized with Optical Cycling Centers (MFOCCs)
 - New collaboration!
 - Wes Campbell, Anastassia Alexandrova, Justin Caram, John Doyle, Eric Hudson, NRH, Anna Krylov

Yb−C≡C−Ca Behaves like two cycling centers! Calculations by Matt O'Rourke

Thanks for your attention!

Come visit!

Questions?

