

Particle tracking in HEP experiments

Pattern recognition Track fitting

from measurements (hits) to reconstructed particle trajectories (tracks). determine the parameters of the particle trajectory from a set of hits.

Why is tracking hard?

...helices in X-Y, straight lines in R-Z

complete tracks, good measurements

perfect world

real world

hard scattering, secondary vertices, decay...

→ algos complex and imperfect!

New challenge: HL-LHC

2026: HL-LHC (High-Luminosity-LHC)

increased event rates (up to x10)

more complex events (up to μ =200, better detector)

Current algorithms of [at least] *quadratic* complexity:

 $O(N^2)$, N=hits

μ (mu): the average number of visible pp interactions per bunch crossing

HEP.QPR, Quantum Pattern Recognition

HEP.QPR goals Track Finding Real-time Tracking with Quantum with Quantum Associative Memory Annealing CHEP 2018 rest of this talk

→ https://hep-qpr.lbl.gov/ ←

A DOE-HEP QuantISED pilot project

Meet the team

Heather Gray (PI)

Frédéric Bapst

Wahid Bhimji

Paolo Calafiura

Steve Farrell

Wim Lavrijsen

Lucy Linder (that's me)

Illya Shapoval

Quantum Annealing & D-Wave

QA in D-Wave computers

bias weights $\Rightarrow a_i$

coupling strength $\Rightarrow b_{ij}$

quantum machine instruction (QMI) objective function:

$$O(a; b; q) = \sum_{i=1}^{N} a_i q_i + \sum_{i=1}^{N} \sum_{j=1}^{N} b_{ij} q_i q_j \quad q_i \in \{0, 1\}$$

QUBO Quadratic Unconstrained Binary Optimisation

The D-Wave hardware

	D-Wave One	D-Wave Two	D-Wave 2X	D-Wave 2000Q
Release date	May 2011	May 2013	August 2015	January 2017
Code-name	Rainier	Vesuvius	?	?
Qubits	128	512	1152	2048
Couplers ^[54]	352	1472	3360	6016
Josephson junctions	24,000	?	128,000	128,000
Operating temperature (K)	?	0.02	0.015	0.015
Power consumption (kW)	?	15.5	25	25
	Lockheed Martin	Lockheed Martin	Lockheed Martin	Temporal Defense Systems
Buyers		Google/NASA/USRA	Google/NASA/USRA	Google/NASA/USRA
			Los Alamos National Laboratory	

minor embedding

QUBO for track reconstruction

Stimpfl-Abele & Garrido (1990) ref

"We can regard a *track* with **n** hits as a set of **n-1** consecutive lines [doublets] with a smooth shape and without bifurcation".

Fig. 2. Display of all generated lines for a real $Z^0 \rightarrow \text{hadrons}$ (RZ projection).

Fig. 1. Display of all generated lines for a real $Z^0 \rightarrow \text{hadrons}$ (XY projection)

Fig. 3. Display of the activated lines after convergence for a real Z⁰ → hadrons (XY projection).

source: fast track finding with neural nets

- generate the set potential doublets (apply early cuts)
- binary classification task to determine which doublets should be kept in the solution

Stimpfl-Abele & Garrido (1990) ref

Energy function of the Hopfield Network:

$$E = -\frac{1}{2} \left[\sum_{l} T_{kln} V_{kl} V_{ln} \right]$$

$$E = -\frac{1}{2} \left[\sum_{l,l} T_{kln} V_{kl} V_{ln} \right]$$

$$-\alpha \left(\sum_{klm(l\neq m)} V_{kl} V_{km} + \sum_{klm(k\neq m)} V_{kl} V_{ml}\right)$$

$$-\beta \Big(\sum_{mn} V_{mn} - N_a\Big)\Big], \quad V \in \{0, 1\}$$

activate only the expected number of neurons (N_a)

"connection strength", interest of connecting two doublets

> avoid "conflicts", a hit belongs to at most one track

$$T_{kln} = \frac{\cos^{\lambda}\theta_{kln}}{d_{kl} + d_{ln}}$$

 $T_{kln} = rac{cos^{\lambda} heta_{kln}}{d_{kl} + d_{ln}}$ favour short and almost straight connections

parameters: $\lambda \alpha \beta$

Stimpfl-Abele & Garrido (1990) ref

$$O(a; b; q) = \sum_{i=1}^{N} a_i q_i + \sum_{i=1}^{N} \sum_{j=1}^{N} b_{ij} q_i q_j \quad q_i \in \{0, 1\}$$

- "easy" to adapt to a QUBO / QMI
 - set the qubit bias weights a; to 0
 - set the coupling strength b_i to either a connection strength (T) or a conflict constant (α term)
 - drop the β term
- ➤ but...
 - efficient early selection of doublets need an *origin assumption*
 - "favor straight connections" ...
 - no "continuity" between doublets → zigzag patterns

OK for high P_{T} tracks only,

breaks on dense datasets (> 400 particles/event)

From doublets to triplets

Focus on triplets of hits: $T_{a,b,c}$

Two triplets $T_{a,b,c}$ and $T_{d,e,f}$ can be combined:

into a quadruplet (aplet) if $a=d \land b=e$

If they share any other hit, they are in conflict.

New properties:

- curvature in the transverse plane
- delta angles in the R-Z plane
- → Powerful early selection, better continuity, fewer zigzags

The new energy function

$$\begin{split} & \underbrace{\frac{\theta}{\theta}}_{\substack{\text{PL} \\ \text{PL} \\ \text{$$

$$E = \alpha \Big(\sum_{i}^{N} T_{i}\Big) - \Big(\sum_{i,j (\in qplets)} S_{ij} T_{i} T_{j}\Big) + \zeta \Big(\sum_{i,k (\in conflicts)} T_{i} T_{k}\Big) \quad T \in \{0,1\}$$
 prior "bias weight" "connection strength", interest of aplet T_{i} - T_{i} avoid "conflicts"

The new energy function

$$E = \alpha \left(\sum_{i}^{N} T_{i} \right) - \left(\sum_{i,j \in qplets} S_{ij} T_{i} T_{j} \right) + \zeta \left(\sum_{i,k \in conflicts} T_{i} T_{k} \right) \quad T \in \{0,1\}$$

As a QUBO:

$$O(a; b; T) = \alpha \left(\sum_{i=1}^{N} T_i \right) + \sum_{i=1}^{N} \sum_{i < j} b_{ij} T_i T_j \quad T \in \{0, 1\}$$

$$b_{i,j} = \begin{cases} -S_{ij}, & \text{if } (Ti, Tj) \text{ form a quadruplet,} \\ \zeta & \text{if } (Ti, Tj) \text{ are in conflict,} \\ 0 & \text{otherwise.} \end{cases}$$

a track of n hits is a set of n-2 triplets that can be combined into n-3 quadruplets a set of track candidates is a set of triplets with no conflict

A triplet $T_{a,b,c}$ is more interesting when:

- o it has little to no hole: H = 0
- the <u>menger curvature</u> **curv(a,b,c)** formed by the three hits in the X-Y plane is small;
- o doublets ab and bc have similar θ angles: $drz(T_{a,b,c}) = |\varsigma(\theta_{ab}\,,\!\theta_{bc})| \text{ is small}$

A qplet (T_i, T_j) is more interesting when:

- \circ it has few holes: $H_{ij} = 0$
- $\label{eq:curv} \begin{array}{ll} \circ & \text{there are similar curvatures::} \\ & deurv_{ij} = |\varsigma(eurv(T_i), eurv(T_j))| \text{ is small} \end{array}$

The interest of connecting two triplets into a aplet can be expressed as:

$$S_{ij} = \frac{\alpha \left(\beta (1 - dcurv_{ij})^{\gamma} + (1 - \beta)(1 - drz_{ij})^{\delta}\right)}{(1 + H_{ij})^{\epsilon}} \quad \text{others=1} \quad S_{ij} = \frac{1 - \frac{1}{2}(dcurv_{ij} + drz_{ij})}{(1 + H_{ij})^{2}}$$

Dataset

<u>TrackML dataset</u> (== HL-LHC) with events split into smaller chunks.

- select P% of particles
- select P% of noise

Set weight=0 for particles with:

- \circ P_T < 1 GeV or
- o less than 5 hits

endcaps

double hits

Input / output

- → set of potential doublets.

 Python adaptation of the <u>ATLAS</u>

 <u>online seeding GPU code</u> (prototype).
- ← subset of the input, doublets part of track candidates.

Scoring functions

- TrackML score
- o precision (~purity)
- o recall (~efficiency)

tune the model for that!

false negative = missings false positive = fakes

iterative hybrid classical/quantum algorithm

QBSOLV

large and/or densely connected QUBOs split into sub-QUBOs fitting the D-Wave hardware.

Tabu search on the recomposed solutions.

evolution of the solution in each <u>absolv</u> loop. The solution is sometimes randomised to escape local minima.

Algorithm overview

Results

dataset size: ~20% 1,637 particles, 11,030 hits

plotting error: too many doublets 392529

392,529 doublets p=**0.26**%, r=**99.15**%

57.3s build QUBO 2,546 doublets (2,964 triplets) QUBO size: 14,345

17.1s sample QUBO running on CPU 1,512 doublets p=**99.13**%, r=**97.06**%

trackml score **97.55**%

Performance

Full TrackML event 6,900 - 14,000 particles, Pt ≥ 150 MeV, ~15% noise/lower Pt hits

time scales ?quadratically? with the #input doublets

composition of the final doublets

> 90% recall (efficiency) and trackml score on doublets classification

\Im What about the fakes ?

"The biggest difference [with conventional methods] is the number of wrongly associated coordinates [...]

soft constraints and very simple geometrical constants is not as good as a sophisticated algorithm based on hard constraints (fits)".

Stimpfl-Abele & Garrido, <u>fast track finding with neural networks</u>

ightarrow using track fitting methods in a post-processing step *should* let us filter many fakes

Future work

- ---> hyperparameter + code optimization
- ---> reduce fake tracks at high track density
- ---> include more properties e.g. magnetic field, CoV

benchmarks & speedup

D-Wave Fujitsu digital annealer other QUBO solvers

- ---> study physics performance
- ---> study timing performance

Thank you for your attention

Any questions?

Any questions?

backup slides

Basics of QA

adiabatic theorem of quantum mechanics,

a physical system remains in the ground state if

there is a gap

QA recipe.

initial Hamiltonian
$$H_0$$
 \to $H(s)=A(s)H_0+B(s)H_p$ with problem Hamiltonian H_p $A(s) \searrow$ and $B(s) \nearrow$ given $s=t/t_f < 1$ ($t_f = anneal time$)

If the adiabatic conditions are respected, the system's ground state at $t=t_f$ encodes the solution.

Sing, QUBO, QMI, ...

Problem	Terms					
Expression	Linear coefficient	Quadratic coefficient	Variable	States		
QUBO (scalar)	a_i	$b_{i,j}$	q_i	{0,1}		
QUBO (matrix)	$\mathrm{Q}_{\mathit{i},\mathit{i}}$	$\mathrm{Q}_{i,j}$	X_i	{0,1}		
Ising	h_i	$J_{i,j}$	\mathcal{S}_i	{-1, 1}		
Graph	Node Weight	Edge Strength	Node			
QPU	Qubit Bias	Coupling Strength	Qubit State	{Spin Up, Spin Down}		

More at https://docs.dwavesys.com/docs/latest/c_gs_3.html

trackml score of **99.42%** for 60 tracks in a phi angle of $\pi/3$ rad.

2,456 tracks/event (~30%)

Total subQUBOs submitted: 13,059

using solver: DW2X_LANL_1

Wall time: 29:20.76

no significant difference with the classical run.

qbsolv - solution evolution over time

Should we discard small tracks?

Doublets, triplets, quadruplets, quintets

doublets model (Stimpfl):

combine into

