Summary of Computing+Machine Learning Parallel Session

CPAD 2018

T. Wongjirad (Tufts)
on behalf of the session conveners
S. Gleyzer, O. Gutsche

Computing & Machine Learning

- Three parallel sessions
- 12 Talks (+1 plenary session)
- Many thanks to all of the speakers for presenting an exciting diverse set of talks
- And thanks to the audience for questions and discussions
- Due to time -- please forgive me if I missed names and slide links

Adoption of Deep Neural Networks

- Some quick descriptions of these algorithms (backups have more details) can be found in K. Terao's talk
- https://indico.fnal.gov/event/18104/session/23/contribution/77

Deep Neural Networks

- Deep neural networks featured in majority of talks
- Such algorithms, e.g. convolutional neural networks, have enabled advances in fields such as computer vision -- bringing techniques to particle physics

Object detection and instance segmentation

Caption generation/scene parsing

"girl in pink dress is jumping in air."

Themes

- Algorithm development in a variety of contexts
 - LHC: Jet ID, track recon.
 - Liquid argon neutrino experiments
 - Cherenkov/scintillator neutrino experiments
 - Adoption of machine learning techniques
- Deployment of algorithms beyond CPUs
 - Deploying Machine Learning Networks on FPGAs
 - Track reconstruction using quantum annealers
- Bringing Everything Together
 - Deploying into online systems
 - Organizing training in computing, ML, etc. in order to maintain the rapid pace of development of new tools

LHC Applications

- Particle ID: quark/gluon, electron/photon, and more.
- L1 muon reconstruction using NN on FPGAs

B. Burkle et al. (Tues morning)

https://indico.fnal.gov/event/18104 /session/23/contribution/147/mate rial/0/0.pdf

Example: End2End method

Simultaneously provide images of energy depositions from several subsystems to convolutional neural networks

E Usai et al (Monday afternoon)

Example: quark vs. gluon jet

	ROC AUC
E2E image, ECAL+HCAL+Tracks	$0.8077 \pm 0.0003*$
RecNN , ascending-p _T	$0.8017 \pm 0.0003^*$
RecNN, descending-pt	0.802
RecNN , anti-k _T	0.801
RecNN, Cambridge/Aachen	0.801
RecNN, no rotation/reclustering	0.800
RecNN, k _T	0.800
RecNN, k _T -colinear10-max	0.799
RecNN, random	0.797

LHC Applications -- Not all machine learning

Studying the impact of the tracker detector layout on CPU usage on reconstruction time and software

V. KRUTELYOV et <u>al.</u> (Monday)

One example: false tracks reduced

Translates to reduced CPU wall time

Neutrino Experiments

 Heard from applications to liquid argon TPCs (GeV events) to Chenenkov/Scintillator detectors (MeV events)

Pixel-level particle ID (on data) For LArTPC images (uBooNE)

Sparse Operations

 CNN operation on 3D space-points enabled by using sparse matrix operations rather than dense operations -- much better fit to liquid argon TPC data (and particle physics data)

L. Domine et al (Tues Morning)

Training speed up

Much less memory usage

https://indico.fnal.gov/event/18104/session/23/contribution/78

Online/Offline deployment of full reco. chain

- Such technical developments allow for fast training AND more efficient deployment/inference
- Allow us to reach eventual, ever-growing ambitions

Code, tutorials, data sets http://deeplearnphysics.org/

K. Terao et al. Sunday

Online/Offline deployment of reco. chain

M. Liu Mon Plenary

These algorithms most efficient on specialized devices -- which are not always as readily available as CPU cluster

(surge in field enabled by GPUs developed to run increasingly demanding video games)

Solving same problems as industry -- opportunities for co-development

https://indico.fnal.gov/event/18104/session/8/contribution/16/material/0/0.pdf

Deployment of NN for L1 Muon Selection on FPGAs

- From simulation studies, we have achieved roughly 4x rate reduction with the addition of the new muon detectors. The overall efficiency has also been improved.
 - Still work in progress.

Jia Fu Low et al. 3 hidden layers (Monday afternoon) with 50/30/20 nodes d > 0.7415 cut d > 0.9136 cut for 8 < p_T < 14 GeV for p_T > 14 GeV 0-1 0-2 2 output 10-4 nodes: · q/p_ 0.4 0.6 · PU discr

 NN understudy deployed using HLS2ML -- exciting tool to ease the deployment of networks on FPGAs

D. Rankin et al (Monday afternoon)

https://indico.fnal.gov/event/18104/session/23/contribution/73

Problems for all next-gen experiments: EIC

Analyze larger, more complex datasets a challenge for everyone Talk from Electron Ion Collider tackling realtime processing (and beyond)

M. DIEFENTHALER et al. (Monday afternoon)

Streaming Readout III: Prototype DAQ systems being discussed

BDX dark matter experiment at JLAB

- digitization: INFN "wave board" digitizer (250 MHz, 14 bit, 12 ch)
- online event reconstruction: TRIDAS system from KM3NeT
- ongoing data validation of prototype syste,

CBM upcoming fixed-target heavy-ion experiment at FAIR

- event rates up to 10MHZ (current heavy-ion experiments 100Hz several kHz)
- no hardware trigger, real-time data selection exclusively on CPU (under development)
- validation with detector prototypes (eTOF@STAR) and with full-system tests (mCBM@GSI)

JLAB streaming readout for upcoming TDIS, SoLid, and EIC experiments

- build various generic streaming DAQ using existing hardware at JLAB
- could serve as an upgrade of existing DAQ systems at JLAB
- gain valuable experience for R&D for future hardware

PHENIX heavy-ion experiment and upgrades at BNL

• 15kHz signal collisions, 1.4M channels streaming

sPHENIX upgrade of PHENIX experiment

- sPHENIX TPC: 160k channels 10b flash ADC @ 20MHz with SAMPA ASIC -> 2 Tbit/s stream rate.
- BNL-712/FELIX-type DAQ with data rate of 200 Gbit/s

CPAD 2018, December 10 22 Jeffersor

Glimpse of the future

- Demonstration of track reconstruction using a quantum annealer
- Exciting step in quantum computing

L. Linder et al. (Sunday afternoon)

Map the problem of selecting true trajectory components from set of possible to the minimization of energy of a quantum system

quantum machine instruction (QMI) objective function:

$$O(a; b; q) = \sum_{i=1}^{N} a_i q_i + \sum_{i=1}^{N} \sum_{j=1}^{N} b_{ij} q_i q_j \quad q_i \in \{0, 1\}$$

QUBO Quadratic Unconstrained Binary Optimisation

- 1. generate the set potential doublets (apply early cuts)
- 2. binary classification task to determine which doublets should be kept in the solution

https://indico.fnal.gov/event/18104/session/23/contribution/61

Track reco. w/ quantum annealer

L. Linder et al. (Sunday afternoon)

Training in vivo networks

- Accelerating R&D requires training all those are interested in joining in (not just software, detector development as well)
- Often overlooked, but critical
- Organize (often redundant) materials from different experiments for common techniques - disseminate widely, host workshops
- For ML:
 - Produce more users and developers
 - Spur community critiques as well

S. Malik et al. (Tues morning)

Get involved!

- ▶IRIS-HEP website http://iris-hep.org/
 - ▶ Jobs on IRIS-HEP and Collaborating Projects http://iris-hep.org/jobs
 - General public announcement mailing list for IRIS-HEP events, talks, meetings, workshops, opportunities for training and job opportunities (subscribe to)
 - announcements@iris-hep.org
- ▶HSF (HEP Software foundation) https://hepsoftwarefoundation.org
 - General Information about HSF (subscribe to): hsf-forum@googlegroups.com
 - Discussions and activities in the HEP Software Foundation mailing lists can be found here (General and Dedicated Forums): https://hepsoftwarefoundation.org/forums.html
 - You can contribute https://hepsoftwarefoundation.org/cwp/cwp-working-groups.html
 - > HSF Events/Workshops https://hepsoftwarefoundation.org/events.html
- ▶FIRST-HEP website http://first-hep.org
 - Funding for participants and lecturer support for Training

Summary

- A great collection of new, promising developments
 - Theme across domains: often can (should?) employ information closer to the raw data of our detectors -- make use of the increasingly precise information coming from new detectors
 - o (can provide means to preliminary performance estimates to inform hardware design as well)
- Many directions to explore -- way more than people to work on them
 - Please join!
- Clear that communities should continue to be in close communication to share advances
 - Shared code
 - Open datasets