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Deep Neural Networks 
for 3D Data  
Reconstruction



55 cm
Run 3469 Event 53223, October 21st, 2015 Outline 

1. Machine Learning & Computer Vision 
2. Applications in LArTPCs 
3. Wrap-up
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Computer Vision
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KamLAND

NOvA Super-K

MicroBooNE

Pixel LArTPC (simulation) 5



KamLAND

NOvA Super-K

MicroBooNE

Pixel LArTPC (simulation)

Need for advanced algorithms 
for analyzing high resolution data 

with complex topologies. 
(goal: maximize physics output) 
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LArTPC Data Reconstruction
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Image credits: TED talk by Fei-Fei Li

How to write  an algorithm  
to identify a cat?

… very hard task …

Machine Learning 
Challenges in Computer Vision
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1.  Write an algorithm based on basic (physics) principles  

algorithm

collection of  
certain shapesA cat  =

(or, a neutrino)

Development Workflow for non-ML algorithms

Image credits: TED talk by Fei-Fei Li

Machine Learning 
Challenges in Computer Vision
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1.  Write an algorithm based on basic (physics) principles  
2. Run on simulation/data samples 
3. Observe failures, implement fixes/heuristics 
4. Iterate over 2 & 3 till a satisfactory level is achieved 
5. Chain multiple algorithms as one algorithm, repeat 2, 3, and 4.

Partial cat 
(escaping muon)

Stretching cat 
(Nuclear FSI)

collection of  
certain shapesA cat  =

(or, a neutrino)

algorithm

Development Workflow for non-ML algorithms

Image credits: TED talk by Fei-Fei Li

Machine Learning 
Challenges in Computer Vision
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Machine Learning
• Learn patterns from data 

- automation of steps 2, 3, and 4 

• Chain algorithms & optimize 
- step 5 addressed by design 

• “Deep Learning”  
- Revolutions in computer vision using deep 

neural networks

Machine Learning 
Challenges in Computer Vision

1.  Write an algorithm based on basic (physics) principles  
2. Run on simulation/data samples 
3. Observe failures, implement fixes/heuristics 
4. Iterate over 2 & 3 till a satisfactory level is achieved 
5. Chain multiple algorithms as one algorithm, repeat 2, 3, and 4.

Development Workflow for non-ML algorithms

Natural 
Neural 

Network
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Machine Learning 
CNNs for Cat Image Analysis

“Cat”CNNs for 
Image Classification

Convolutional Neural Networks (CNNs)
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“Cat”

After 
1st conv. layer

After 
4th conv. layer

Down-sampling 
Feature Maps

After 
2nd conv. layer

After 
3rd conv. layer

1D Array 
Discriminants

Convolutional Neural Networks (CNNs)

CNNs for 
Image Classification

CNNs are  
effective image 
feature extractors, 
and also 
data transformers.

Machine Learning 
CNNs for Cat Image Analysis



2012
Public image classification 
competition w/ 1.2M images, 
1000 object categories.
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> 30,000 
citations

“Cat”CNNs for 
Image Classification

Convolutional Neural Networks (CNNs)

Machine Learning 
CNNs for Cat Image Analysis 
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Machine Learning 
Beyond Image Classifications

Mask R-CNN 
arXiv:1703.06870  

Detection of Image Contexts
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Interpretation of Contexts’ Correlation

NeuralTalk 
github:karpathy/neuraltalk2 

Machine Learning 
Beyond Image Classifications

https://github.com/karpathy/neuraltalk2
https://arxiv.org/pdf/1703.06870.pdf


Machine Learning for Computer Vision
LArTPCs

Image Credit 
Fermilab Today 
http://news.fnal.gov/2018/03/when-it-rains-2/  17

http://news.fnal.gov/2018/03/when-it-rains-2/
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ML Technique  
@ MicroBooNE 

LArTPC Detector

γ

µπ

e

νµ

MicroBooNE 
Simulation + Data Overlay

Image Classification 
• Classify a whole image into object categories 
• particle type identification from an image 
• signal/background selection

Object detection 
neutrino interaction 
vertex localization

νµ

JINST 12 P03011 (2017) 
arXiv:1611.05531

Early Demonstrations 
Machine Learning for LArTPC Image Analysis

http://iopscience.iop.org/article/10.1088/1748-0221/12/03/P03011/meta
https://arxiv.org/abs/1611.05531


Semantic Segmentation 
• Recently published … arXiv:1808.07269 
• Pixel-level object classification 

- Separation of EM-particle from other types 
- Key input information for particle clustering 

• First time deep neural network validated on LArTPC data 
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Real Data Image Network Output

Early Demonstrations 
Machine Learning for LArTPC Image Analysis

Network Input Network Output

ML Technique  
@ MicroBooNE 

LArTPC Detector

https://arxiv.org/abs/1808.07269
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Early Demonstrations 
Machine Learning for LArTPC Image Analysis

down-sampling 
(encoding)

“Cat”

How image classification works
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Early Demonstrations 
Machine Learning for LArTPC Image Analysis

down-sampling 
(encoding)

“Human Face”

How image classification works

Intermediate Data Tensor 
(low-resolution, high-level features)
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Early Demonstrations 
Machine Learning for LArTPC Image Analysis

Intermediate Data Tensor 
(low-resolution, high-level features)

down-sampling 
(encoding)

up-sampling 

(decoding)

• Combine “up-sampling” + convolutions 
• Output: “learnable” interpolation filters

How pixel segmentation works
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Early Demonstrations 
Machine Learning for LArTPC Image Analysis

Intermediate Data Tensor 
(low-resolution, high-level features)

down-sampling 
(encoding)

up-sampling 

(decoding)

concatenate
concatenate
concatenate

• Combine “up-sampling” + convolutions 
• Output: “learnable” interpolation filters

How pixel segmentation works

Concatenation recovers spatial resolution information
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Early Demonstrations 
Machine Learning for LArTPC Image Analysis

µ

e-
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Early Demonstrations 
Machine Learning for LArTPC Image Analysis

Localized features at 
the pixel-level are useful 
to inspect correlation 

of data features & 
algorithm responses
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Machine Learning 
… for LArTPC Data Reconstruction

+ + …

Outputs from the 
individual networks

Point 
Prediction

Pixel 
Feature

Particle 
Clustering

Input Data High-level 
Output

p

pepi

Multi-task Deep Neural Network 
Introduce physical feature extraction tasks (reconstruction) to 
bias the data transformation. Implicitly introduce physics 
concepts + construct logic for the final output.



Input Step 3

π

p

p
e

Step 1 Step 2
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Machine Learning 
… for LArTPC Data Reconstruction

1. Key points (track edges) + pixel feature annotation 
2. Vertex finding + particle clustering 
3. Particle type + energy/momentum  
4. Hierarchy building

ML-based Full Data Reconstruction Chain 
•  A cluster of many task-specific networks in 2D & 3D 

-  Vertex finding, clustering, particle ID, etc.
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1000

100

10

10 2 3 4 5
Pixel distance between the target truth 
point to the closest proposed point

3mm/pixel 
resolution

Laura Domine (GS) 
Presented @ Neutrino2018 

Competition top-10 finalist!
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Multi-Task Network Cascade 
• Chain of Segmentation + Detection 

- Feature points: “shower start” and “track edges” 
- Classify each pixel into “shower” vs. “ track” 

• Extension to 3D data 
- Change in tensor dimensions, identical algorithms

Toward Full 3D Reconstruction Chain 
Machine Learning for Particle Image Analysis
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“Applying for 3D” is simple, but is it scalable? 
• LArTPC data is generally sparse but locally dense 

- Mostly zero-filled matrix. CNN = dense matrix operation = bad! 
- Matrix size (volume) scales by power low, but non-zero pixels scales 

almost linearly (most particle trajectories are locally 1D line)

Toward Full 3D Reconstruction Chain 
Machine Learning for Particle Image Analysis

192-cubic volume? 
• 26GB GPU 
• ~10 days training
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“Applying for 3D” is simple, but is it scalable? 
• LArTPC data is generally sparse but locally dense 

- Mostly zero-filled matrix. CNN = dense matrix operation = bad! 
- Matrix size (volume) scales by power low, but non-zero pixels scales 

almost linearly (most particle trajectories are locally 1D line)

Toward Full 3D Reconstruction Chain 
Machine Learning for Particle Image Analysis

Laura Domine will talk about Sparse Submanifold CNN 

(a possible solution to the scalability issue from CVPR 2018) 

Go see her talk on Tuesday morning ML parallel session
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With Sparse Submanifold Convolution, 
easily fit 512-cubic (and still <1GB) 

can train much faster

Toward Full 3D Reconstruction Chain 
Machine Learning for Particle Image Analysis
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More space to learn… 
Proton 

MIP 
EM Shower 

Michel Electron 
Delta Ray

Toward Full 3D Reconstruction Chain 
Machine Learning for Particle Image Analysis
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Proton 
MIP 
EM Shower 
Michel Electron 
Delta Ray

Toward Full 3D Reconstruction Chain 
Machine Learning for Particle Image Analysis



… wrapping up …

 34



Input Step 3

π

p

p
e

Step 1 Step 2

Where we are…

Aiming to complete the full chain v.1 in early 2019, move 
to physics analysis applications

1. Space point (track edges) + pixel feature annotation 
2. Vertex finding + particle clustering 
3. Particle type + energy/momentum  
4. Hierarchy building
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Toward Full 3D Reconstruction Chain 
Machine Learning for Particle Image Analysis



Sharing Our R&D 
Machine Learning & Broader Impact

!36

Public Data Set: OSF Software Containers
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Sharing Our R&D 
Machine Learning & Broader Impact

DeepLearnPhysics (deeplearnphysics.org)

• Collaboration for ML technique R&D 
- ~70 members including HEP exp/theory, nuclear physics, BES 

(LCLS, SSRL), Cryo-EM, accelerator, AI/CS community 
• Open source software/tools, containers, open data 

- our framework to collaborate & share reproducible results 
• Community building 

- In-person tutorials (SLAC,LBNL,FNAL,BNL,VTech,MIT,Columbia…) 
- Sharing talk invitations, job/funding opportunities, etc. 

Hands-on workshop 
@ SLAC/Stanford

Public challenge (collab. w/ LHC)

Collaborations 
beyond HEP

http://www.deeplearnphysics.org
http://deeplearnphysics.org
http://deeplearnphysics.org/authors.html
https://github.com/DeepLearnPhysics
https://singularity-hub.org/collections/459
http://deeplearnphysics.org/DataChallenge
https://competitions.codalab.org/competitions/19818#learn_the_details
https://competitions.codalab.org/competitions/19818#learn_the_details


Take Away Messages

2. Deep neural networks (DNNs) are efficient image feature 
extraction techniques developed in computer vision

4. Scalability can be addressed using SSCN (see Laura’s talk)
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Inside 
me

Thank you! 
for your attention :)

1. LArTPCs are high resolution particle imaging detectors

3. DNNs can be used for ML-based full data reco chain 

5. Reco chain is being developed toward physics results :)
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Toward Full 3D Reconstruction Chain 
Machine Learning for Particle Image Analysis

Collaboration / Synergies
Wire LArTPC for 3D 

• WireCell team (BNL) on SBN/DUNE 
• Cluster3D (SLAC) on SBN 
• LArFlow (Tufts) on MicroBooNE 

Pixel LArTPC 
• Interest from LBNL/UTA/Bern/MSU 

- Looking forward to 2x2 ArgonCUBE modules 
- Plan/Start working with students specifically for DUNE ND 

Computing 
• ANL demonstrating our code on distributed environment 
• ORNL+FNAL colleagues to submit ALCC for Summit HPC 
• FPGA-based inference system R&D (HEP-wide + beyond)
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Back-up Slides
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νµ

Bubble Chamber

Liquid Argon Time Projection Chamber 
• Chamber-like images: digitized electronics readout 
• Calorimetric measurement + scalability to a large mass

~mm/pixel spatial resolution 
~MeV level sensitivity

MicroBooNE 
~87 ton (school bus size)

Next Neutrino Detectors?



How Wire LArTPC (MicroBooNE) Work (I)

Cathode @ 70 kV 
(plate)

Anode 
(wire plane)

Electric Field 
~270 V/cm

X = 2.5 m

Y
 = 2.3 m

Z = 10
.4 

m

1. Charged particles interact in LAr 
• Ionize argon 
• Produce scintillation light 

2. Ionization e- drift toward anode 
3. Wire planes detect drift e-
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ν



Anode 
(wire plane)

X = 2.5 m

Y
 = 2.3 m

Z = 10
.4 

m

1. Charged particles interact in LAr 
• Ionize argon 
• Produce scintillation light 

2. Ionization e- drift toward anode 
3. Wire planes detect drift e-

Scintillation Light

Electrons

Scintillation Light 
detected by PMTs

Cathode @ 70 kV 
(plate)

Electric Field 
~270 V/cm
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How Wire LArTPC (MicroBooNE) Work (I)



Scintillation Light 
detected by PMTs

Anode 
(wire plane)

X = 2.5 m

Y
 = 2.3 m

Z = 10
.4 

m

1. Charged particles interact in LAr 
• Ionize argon 
• Produce scintillation light 

2. Ionization e- drift toward anode 
3. Wire planes detect drift e-

Charge collected 
by wire plane

Drift Time = X position

Cathode @ 70 kV 
(plate)

Electric Field 
~270 V/cm
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Three 
Wire Planes

How Wire LArTPC (MicroBooNE) Work (I)



How Wire LArTPC (MicroBooNE) Work (I)

Scintillation Light 
detected by PMTs

Anode 
(wire plane)

X = 2.5 m

Y
 = 2.3 m

Z = 10
.4 

m

1. Charged particles interact in LAr 
• Ionize argon 
• Produce scintillation light 

2. Ionization e- drift toward anode 
3. Wire planes detect drift e-

Charge collected 
by pixel-pad plane

Drift Time = X position

Cathode @ 70 kV 
(plate)

Electric Field 
~270 V/cm
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Pixel

pixel detector

J. Assadi et al. arxiv 1801.08884

DUNE-ND

https://arxiv.org/pdf/1801.08884.pdf


LArTPC: Particle Imaging Detector

2D Projection 
(Wire Detector)

3D Imaging 
(Pixel Detector)

… when things work …
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100 cm

10
0

 c
m

Cosmic Data : Run 6280  Event 6812  May 12th, 2016

 47

There may be lots of backgrounds

Challenges in Data Analysis?
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100 cm

10
0

 c
m

Cosmic Data : Run 6280  Event 6812  May 12th, 2016

55 cm
Run 3469 Event 53223, October 21st, 2015 

≃ 14 cm x 14 cm

≃ 200 cm

Interaction vertex can be anywhere 
in LAr, varying in size (cm ~ meters)

Challenges in Data Analysis?



55 cm
Run 3469 Event 53223, October 21st, 2015 

νµ

p

µ

π?

Cosmics

Cosmics

Cosmics
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Identify neutrino interaction vertex, 
cluster individual particle energy depositions

Challenges in Data Analysis?



Deal with optical illusions in 2D projections 
+ pattern recognitions in 3D

Challenges in Data Analysis?

“Physics features” look obvious to human physicists 
(eyes) but hand-engineering algorithms to extract 

them turned out challenging… 50



Convolutional 
Neural 

Network 
~ How does it work? ~

Image context analysis “Pose” detection

 51
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⟶

x0 
 

The basic unit of a neural net is 
the perceptron (loosely based 

on a real neuron) 

Takes in a vector of inputs (x). 
Commonly inputs are summed 
with weights (w) and offset (b) 

then run through activation.

x

⋮

[ 

[ 

x1 
 

xn 
 

∑

w0

w1

wn

⋮
+ b

Input Neuron 
Sum

Activation 
Output

σ( x )➞

Machine Learning Overview 
Simple neural network (perceptron)
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By picking a value for w and b,  
we define a boundary  

between the two sets of datafrom wikipedia

[ x0 
 

x1 
 

∑0

Output

[ 

cat 
dog

Imagine using two features to separate cats and dogs

∑0

Machine Learning Overview 
Simple neural network (perceptron)

https://en.wikipedia.org/wiki/Perceptron
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from wikipedia

[ x0 
 

x1 
 

∑0

Output

[ 

cat 
dog

What if we have a new data point?

∑0

Machine Learning Overview 
Simple neural network (perceptron)

https://en.wikipedia.org/wiki/Perceptron
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from wikipedia

What if we have a new data point?

We can add another perceptron 
to help (but does not yet solve the 

problem)

x0 
 

x1 
 

∑0

∑1

∑0

∑1

Machine Learning Overview 
Simple neural network (perceptron)

https://en.wikipedia.org/wiki/Perceptron
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from wikipedia

What if we have a new data point?

[ x0 
 

x1 
 

Output

[ 

cat 
dog

∑1
∑2

Another layer can classify based 
on preceding layer’s output  
(of non-linear activation)

∑0

∑0

∑1

∑2

Machine Learning Overview 
Simple neural network (perceptron)

https://en.wikipedia.org/wiki/Perceptron
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Machine Learning Overview 
Back to analyzing a cat “image…”

Goal: Dog Cator

1D array of discriminants

How?
This part can be done 
with a classic (fully-
connected) neural 

network

How can we extract 
“features” from “image”?

… the hard part … 
(where I have failed for long)
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Machine Learning Overview 
Back to analyzing a cat “image…”

Goal: Dog Cator

1D array of discriminants

How?
This part can be done 
with a classic (fully-
connected) neural 

network

How can we extract 
“features” from “image”?

Convolutional Neural 
Network
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Goal: Dog Cator

0
0
0 1

2 0
0

1 0
⊗

1D array of discriminants

Machine Learning Overview 
Convolutional Neural Network (CNN)

“neuron sum”

convolutional 
filter (kernel)

“weights”
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Machine Learning Overview 
Convolutional Neural Network (CNN)

Goal: Dog Cator

1D array of discriminants

0
0
0 1

2 0
0

1 0

convolutional 
filter (kernel)

⊗
Apply many 

filters 
(Conv. Layer)

“weights”
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Machine Learning Overview 
Convolutional Neural Network (CNN)

Goal: Dog Cator

1D array of discriminants

Down 
sample

0
0
0 1

2 0
0

1 0

convolutional 
filter (kernel)

⊗
Apply many 

filters 
(Conv. Layer)

“weights”

e.g.) Max Pooling
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Machine Learning Overview 
Convolutional Neural Network (CNN)

Goal: Dog Cator

1D array of discriminants

Down 
sample

Apply more 
filters 

(Conv. Layer)

0
0
0 1

2 0
0

1 0

convolutional 
filter (kernel)

⊗
Apply many 

filters 
(Conv. Layer)

“weights”
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Machine Learning Overview 
Convolutional Neural Network (CNN)

Goal: Dog Cator

1D array of discriminants

Down 
sample

0
0
0 1

2 0
0

1 0
⊗

Apply many 
filters 

(Conv. Layer) Repeat
Apply more 

filters 
(Conv. Layer)

convolutional 
filter (kernel)

“weights”
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Machine Learning Overview 
Supervised Training of CNN

Goal: Dog Cator

1D array of discriminants

Down 
sample

0
0
0 1

2 0
0

1 0 x
y

f (x,y)

“Loss” 
(error)

z = f (x,y) Repeat

Differential 
operations

“Back-propagation”

Apply more 
filters 

(Conv. Layer)

convolutional 
filter (kernel)

“weights”
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Machine Learning Overview 
Summarizing CNNs

• CNNs are “feature extraction machine”  
-  Consists of “convolution layers” with “kernels” 
-  A chain of linear algebra operations = “massively parallel” 

‣  Suited for acceleration using many-core hardwares (e.g. GPUs) 
• CNN: data ⇔ distribution “Mapping” (transformation)

Input Image

After 
1st conv. layer

Discriminants

Down-sampling 
Feature Maps

After 
2nd conv. layer

After 
3rd conv. layer



DNN for LArTPC Data Reconstruction

U-ResNet

How does 
U-ResNet Work?

Down sampling + Convolutions to identify 
highly abstract features (e.g. “human face”)

Interpolation filters 
(up-sampling) 
+ Convolutions 
(“learnable” filter)
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Validation with real data



Benchmarking SSNet w/ Real Data
Samples (100 images per sample per sim/data)

A cosmic ray muon decay 
- Involves both “track” and “shower”, simple and intuitive. 

Neutrino interactions 
- More complicated: varying particle types and multiplicity

µ

e-

MicroBooNE Data 
Preliminary 
In-Progress

Example 
Muon decay
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Input Image Human Label SSNet Label

MicroBooNE Data 
Preliminary 
In-Progress

MicroBooNE Data 
Preliminary 
In-Progress

MicroBooNE Data 
Preliminary 
In-Progress

MicroBooNE Data 
Preliminary 
In-Progress

MicroBooNE Data 
Preliminary 
In-Progress

MicroBooNE Data 
Preliminary 
In-Progress

Decay Muons: Example Displays
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Input Image Human Label SSNet Label

MicroBooNE Data 
Preliminary 
In-Progress

MicroBooNE Data 
Preliminary 
In-Progress

MicroBooNE Data 
Preliminary 
In-Progress

MicroBooNE Data 
Preliminary 
In-Progress

MicroBooNE Data 
Preliminary 
In-Progress

MicroBooNE Data 
Preliminary 
In-Progress

4 Visually Picked “Busy Neutrino Events”



Overall Performance
•  Data/Simulation agreement within statistical error 

- No systematic error included 
•  Network does better than a human analyzer (sim.)

Human vs. Network 
Disagreement pixel 
fraction per event 

(100 images)
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Muon Decay Neutrino w/ Gamma

Disagreement rate mean/std in %

Human vs. Network 
Disagreement pixel 
fraction per event 

(100 images)

Disagreement rate mean/std in %



Decay Muons: Pixel Value Variation
Studied how network performance varies when pixel 

values are scaled by a constant factor

Data 
MC

Data x 0.75 
MC

No scaling

Change in the mean error rate is within 1% when 
pixel values are scaled within 20%, fairly robust 72

MicroBooNE Data 
Preliminary 
In-Progress

MicroBooNE Data 
Preliminary 
In-Progress



Decay Muons: Inter-Pixel Correlation
Study, qualitatively, how network reacts to 

interesting portions of an image

MIP part of a track

Bragg peak

Low energy 
electron
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MicroBooNE Data 
Preliminary 
In-Progress



3D Data Reconstruction @ SLAC

Tracy Usher 
•  Showing ML can be started above age of 60

Tracy shows you can start ML above age of 60 74



Technique Validation on Data 
• Same paper … arXiv:1808.07269 

- Important for new techniques such as this 
• Compared physicist vs. network predictions
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Progress Report 
Machine Learning & Data Reconstruction

https://arxiv.org/abs/1808.07269
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Future/On-going Projects 
Drawbacks of supervised learning & mitigations

What can we do about imperfect simulation?
• Problematic: the “signal distribution” learnt by the 
algorithm may be different in two domains! 

• Mitigation techniques in ML domain? 
-  Can try CNN to “locate” where it is 

Data

Simulation

Overlaid

Semantic 
Segmentation 
“data vs. sim”

“Where are discrepancies” 
@ pixel level
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What can we do about imperfect simulation?
• Problematic: the “signal distribution” learnt by the 
algorithm may be different in two domains! 

• Mitigation techniques in ML domain? 
-  Can try CNN to “locate” where it is 
-  Can try CNN to “fix” the discrepancy 

Data

Simulation

D Data or Simulation?

Future/On-going Projects 
Drawbacks of supervised learning & mitigations
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What can we do about imperfect simulation?
• Problematic: the “signal distribution” learnt by the 
algorithm may be different in two domains! 

• Mitigation techniques in ML domain? 
-  Can try CNN to “locate” where it is 
-  Can try CNN to “fix” the discrepancy 

Data

Simulation Synthetic simulation

G

D Data or Simulation? Generative Adversarial Network 
Can learn the “mapping” between the 
data and simulation “distributions”. 
The generator network can be used as 
a synthetic image generator to train 
different neural networks

Future/On-going Projects 
Drawbacks of supervised learning & mitigations
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What can we do about imperfect simulation?
• Problematic: the “signal distribution” learnt by the 
algorithm may be different in two domains! 

• Mitigation techniques in ML domain? 
-  Can try CNN to “locate” where it is 
-  Can try CNN to “fix” the discrepancy 
-  Can try a training technique to minimize the effect

Domain-Adversarial Training 
of Neural Networks 

J. Mach. Learn. Res. 17  (2016)

Maximize the loss for 
discriminate data vs. simulation, 
feature extractors are penalized 

to key on simulation specific 
information

Minerva Paper arXiv:1808.08332

Future/On-going Projects 
Drawbacks of supervised learning & mitigations

https://arxiv.org/pdf/1505.07818.pdf
https://arxiv.org/abs/1808.08332

