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KamLAND e “ 77 5ms of data at the NOVA Far Detector

Each pixel is one hit cell
Color shows charge digitized from the light

NOvA

NOVA - FNAL E929

Run: 18975/ 43

Event: 628855 / SNEWSBeatSlow
UTC Mon Feb 23, 2015 .

14:30:1.383526016  Several hundred cosmic rays crossed the detector

(j:he many peaks in the timing distribution below)

- MicroB 01\{E

Run 3493 Event 41075, October 23*¢, 2015
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5ms of data at the NOVA Far Detector
Each pixel is one hit cell
Color shows charge digitized from the light

~

NOvA

NOVA - FNAL E929

Run: 18975/ 43

Event: 628855 / SNEWSBeatSlow
UTC Mon Feb 23, 2015
14:30:1.383526016  Several

(j:he ma

- uBoo

Run 3493 Event 41075, October 23™, 2015
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LArTPC Data Reconstruction

uBooNE _
B

Run 3493 Event 41075, October 23"%, 2015
75 cm



Machine Learning
Challenges in Computer Vision

>
)

N

How to write an algorithm
to 1dentify a cat?

Very hard task ..

67 15 83 09 40 19 40 11 31 35 60 43 66 14 48 08 60 13
77 23 22 74 09 90 36 12 29 39 78 31 71 73 22 50 92 35
48 72 85 27 79 08 41 31 09 53 05 40 04 31 91 56 26 85
43 54 21 33 81 30 72 06 79 34 39 59 70 03 24 91 03 40
10 25 54 71 24 50 87 88 47 68 31 42 09 77 40 07 26 73
38 73 50 47 22 21 88 78 02 95 19 59 60 93 73 40 67 99
67 38 55 51 26 81 43 66 89 69 92 94 50 08 94 63 33 66
38 46 63 07 66 68 41 49 34 33 66 76 68 97 53 18 72 21
86 66 06 68 13 01 89 00 80 70 21 27 14 90 80 95 31 68
93 88 02 97 92 41 21 54 24 33 97 10 33 47 24 08 12 76
62 42 88 15 02 57 20 43 09 71 54 73 29 57 23 81 99 41
57 02 84 20 31 97 41 73 19 29 17 28 99 16 23 19 53 53
34 86 46 18 95 65 62 28 62 95 35 84 18 22 81 45 10 12
34 46 77 60 28 62 16 61 72 19 88 14 43 23 64 43 35 00
68 89 13 74 48 90 12 59 02 31 14 34 77 47 04 69 99 66
05 77 88 20 63 57 41 50 68 04 30 62 09 67 61 86 31 43
07 95 11 52 04 91 58 59 30 09 46 95 31 71 43 26 48 19
86 71 64 31 49 99 60 63 97 61 43 86 36 53 82 31 00 52
18 10 79 39 77 28 39 17 76 81 93 35 02 78 10 30 35 75
71 85 86 24 93 75 35 70 30 16 07 35 08 61 82 85 95 22

Image credits: TED talk by Fei-Fei Li



Machine Learning
Challenges in Computer Vision

o1 A

P iy TN

Development Workflow for non-ML algorithms

1. Write an algorithm based on basic (physics) principles

A collection of

cat =

(or, a neutrino)

certain shapes

9
Image credits: TED talk by Fei-Fei Li



Machine Learning
Challenges in Computer Vision

o1 A

P iy TN

Development Workflow for non-ML algorithms

2. Run on simulation/data samples

3. Observe failures, implement fixes/heuristics

4. Iterate over 2 & 3 till a satisfactory level is achieved

5. Chain multiple algorithms as one algorithm, repeat 2, 3, and 4.

Stretching cat
(Nuclear FSI)

$

collection of
certain shapes

Partial cat
(escaping muon)

A cat =

(or, a neutrino)

10
Image credits: TED talk by Fei-Fei Li




Machine Learning
Challenges in Computer Vision

o1 A

Machine Learning

- Learn patterns from data
- automation of steps 2, 3, and 4

« Chain algorithms & optimize
- step 5 addressed by design

* “Deep Learning”
- Revolutions in computer vision using deep

neural networks

P iy (WA

Natural
Neural
Network

11



Machine Learning
CNNs for Cat Image Analysis

o1 A

P iy TN

Convolutional Neural Networks (CNNs)

CNNs for “ ”
> Image Classification Cat

12



Machine Learning
CNNs for Cat Image Analysis

Convolutional Neural Networks (CNNs)
CNNss for “ ”
> Image Classification Cat

Down-sampling
Feature Maps

CNNs are
effective image W@ KL > n00000 e

1D A
feature extractors, e After rray
and also After 3rd conv. layer
data transformers. 2nd conv. layer

After
ktconv. layer j

4th conv. layer Discriminants

13



Machine Learning
CNNs for Cat Image Analysis

»
)

(7))
5..
C.

Convolutional Neural Networks (CNNs)

CNNs for
Image Classification

(14 Cat”

2012 IMAGE

Public image classification
competition w/ 1.2M images,
1000 object categories.

ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky
University of Toronto
kriz@cs.utoronto.ca

Ilya Sutskever
University of Toronto
ilya@cs.utoronto.ca

Geoffrey E. Hinton
University of Toronto
hinton@cs.utoronto.ca

Abstract .3 ,.
We trained a large, deep convolutional neural network cltatlons

high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 dif-
ferent classes. On the test data, we achieved top-1 and top-5 error rates of 37.5%
and 17.0% which is considerably better than the previous state-of-the-art. The
neural network, which has 60 million parameters and 650,000 neurons, consists
of five convolutional layers, some of which are followed by max-pooling layers,
and three fully-connected layers with a final 1000-way softmax. To make train-
ing faster, we used non-saturating neurons and a very efficient GPU implemen-

mlfe

motor scooter tation of the convolution operation. To reduce overfitting in the fully-connected
mite container ship motor scooter ledpard layers we employed a recently-developed regularization method called “dropout™
black widow lifeboat go-kart jaguar that proved to be very effective. We also entered a variant of this model in the
cockroach amphibian moped cheetah ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%.
tick fireboat bumper car snow leopard compared to 26.2% achieved by the second-best entry. 14
starfish drilling platform golfcart Egyptian cat



Machine Learning
Beyond Image Classifications . an

Detection of Image Contexts
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Machine Learning
Beyond Image Classifications

el AL
LS | = g \ 2

Interpretation of Contexts’ Correlation

R

7 N
. .

PREVIOUS F£T18

NeﬁralTalk
github:karpathy/neuraltalk2

"girl in pink dress is jumping in

alr.

1.12 woman

-0.28 in

1.23 white
1.45 dress
0.06 standing
-0.13 with
3.58 tennis
1.81 racket
0.06 two
0.05 people
-0.14 In
0.30 green
-0.09 behind
-0.14 her

16


https://github.com/karpathy/neuraltalk2
https://arxiv.org/pdf/1703.06870.pdf
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Image Credit *
Fermilab Today

http://news.tnal.gov/2018/03/when-it-rains-2



http://news.fnal.gov/2018/03/when-it-rains-2/

Early Demonstrations
Machine Learning for LArTPC Image Analysis

L Tt M ML Technique
A \ @ MicroBooNE
- - LArTPC Detector
. Image Classification L T o |
’j‘____l__; f = « Classify a whole image into object categories )

el Y « particle type identification from an image
« signal/background selection

JINST 12 P0o3011 (2017)
arXiv:1611.05531 °

, "~ Object detection
- MicroBooNE KR Py neutrino interaction
Simulation + Data Overlay . vertex localization


http://iopscience.iop.org/article/10.1088/1748-0221/12/03/P03011/meta
https://arxiv.org/abs/1611.05531

Early Demonstrations
Machine Learning for LArTPC Image Analysis

Semantic Segmentation ML Technique
 Recently published ... arXiv:1808.07269 @ MicroBooNE
« Pixel-level object classification LArTPC Detector

- Separation of EM-particle from other types
- Key input information for particle clustering
« First time deep neural network Validated on LArTPC data

30 cm 30 cm

| /,. Real Data Image | / Network Output |

J \\
/

\ r N
\ / \\\ P ’
\ a 4
\ ” //// - \
\ \ . /
X )
. cosmic /

BOO s COSII]IC--’.‘ . P o
e -
11 1 i
BNB Data : Run 5419 Event 6573 March 14th, 2016 BNB Data : Run 5419 Event 6573 March 14th, 2016

Network Input Network Output



https://arxiv.org/abs/1808.07269

Early Demonstrations
Machine Learning for LArTPC Image Analysis .

pe Ty (U

How image classification works

WW sesssss  “Cat”

20



Early Demonstrations
Machine Learning for LArTPC Image Analysis .

pe Ty (O

How image classification works
—'—W

(
encodm g]H)g m

KKK s90eee - “Human Face”

21



Early Demonstrations
Machine Learning for LArTPC Image Analysis .

T NS

How pixel segmentation works
—

« Combine “up-sampling” + convolutions
« Output: “learnable” interpolation filters

do .
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Early Demonstrations
Machine Learning for LArTPC Image Analysis _ _

pe Ty (O

How pixel segmentation works

« Combine “up-sampling” + convolutions
« Output: “learnable” interpolation filters

ovyy -

(ene,, 1D

a
cog;, Plin
ing) ¢

\\0%
0P
‘ concatenate I
concatenate

concatenate

Concatenation recovers spatial resolution information



Early Demonstrations
Machine Learning for LArTPC Image Analysis
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Early Demonstrations
Machine Learnlng for LArTPC Image Analysis

Region 2

.'s':

AMICI‘OBOONE - - AercroBooNE | - -:"'M*i.crtr)ooE'
Data Data Data

Regioﬂ 3

Region1 .- '

o [ Shower score [ [ Shower score [ Shower score
g 0.8 [ Track score [ Track score [ Track score
= MicroBooNE MicroBooNE MicroBooNE
g 0.6 Data Data Data
S
f 0.4
]
-.hd a2
s
’ . . . . 0.2 0.4 0.6 0.8 " 0.2 0.4 0.6 0.8
S Score Score
[ ]
Localized features at
MicroBooNE MicroBooNE MicroBooNE MicroBooNE the pixel_level are useful
Data Data Data ‘ Data . .
to inspect correlation
[ Shower score [ Shower score [ Shower score [ Shower score )
go.s [ Track score [ Track score [ Track score [ Track score Of data features &
E 0.6 MicroBooNE MicroBooNE MicroBooNE MicroBooNE .
£o Data Data Data Data algorithm responses
<04
A
Loz
Il |
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 25
Score Score Score Score



Machine Learning
... for LArTPC Data Reconstruction

Multi-task Deep Neural Network

Introduce physical feature extraction tasks (reconstruction) to
bias the data transformation. Implicitly introduce physics
concepts + construct logic for the final output.

g D o
1/ —
1 "_".:"
1 —
PR
B -

© O O © O O O O
PavavaveR AVAYAVA
nput Data High-level
Particle 5 Output
Clustering -
Outputs from the

individual networks

26



Machine Learning
... for LArTPC Data Reconstruction

o1 AL
Dk

ML-based Full Data Reconstruction Chain

« A cluster of many task-specific networks in 2D & 3D
- Vertex finding, clustering, particle ID, etc.

i O 1. Key points (track edges) + pixel feature annotation
O 2. Vertex finding + particle clustering

O 3. Particle type + energy/momentum

O 4. Hierarchy building




Toward Full 3D Reconstruction Chain
Machine Learning for Particle Image Analysis

Laura Domine (GS)s

Multi-Task Network Cascade Presented @ Neutrino2018
Competition,top-10 finalist!

e Chain of Segmentation + Detection

- Feature points: “shower start” and “track edges”
- Classify each pixel into “shower” vs. “ track”

e Extension to 3D data
- Change in tensor dimensions, identical algorithms

?;),mmé/pixej

°. 2 1000 J-- resolution

100 3

10 . Nl .... L. .....

24cm

0 1 2 3 4 5

Pixel distance between the target truth
point to the closest proposed point28 28




Toward Full 3D Reconstruction Chain
Machine Learning for Particle Image Analysis

“Applying for 3D” is simple, but is it scalable?
« LArTPC data is generally sparse but locally dense
- Mostly zero-filled matrix. CNN = dense matrix operation = bad!

- Matrix size (volume) scales by power low, but non-zero pixels scales
almost linearly (most particle trajectories are locally 1D line)

./
cosmic /-

. cosmic

v"”j’l'
) cosmic .
pBoo Vi
BNB Data : Run 5419 Event 6573 March 14th, 2016




Toward Full 3D Reconstruction Chain
Machine Learning for Particle Image Analysis

“Applying for 3D” is simple, but is it scalable?
« LArTPC data is generally sparse but locally dense
- Mostly zero-filled matrix. CNN = dense matrix operation = bad!

- Matrix size (volume) scales by power low, but non-zero pixels scales
almost linearly (most particle trajectories are locally 1D line)

./
cosmic /. |
/

Laura Domine will talk about Spa§e Submanifold CNN

(a possible solution to the scalabi issue from CVPR 2018)

Go see her talk on Tuesday morniiiez M1, parallel session

p

uBooNE _

R BNB Data : Run 5419 Event 6573 March 14th, 2016

cosmic _.-




Toward Full 3D Reconstruction Chain

Machine Learning for Particle Image Analysis

With Sparse Submanifold Convolution,
easily fit 512-cubic (and still <1GB)
can train much faster




Toward Full 3D Reconstruction Chain

Machine Learning for Particle Image Analysis

More space to learn...
~_ Proton
 EM Shower
° Michel Electron
= DbelmlaRay




Toward Full 3D Reconstruction Chain

Machine Learning for Particle Image Analysis

Proton L
MIP o
EM Shower |
Michel Electron
Delta Ray




... Wrapping up ...



Toward Full 3D Reconstruction Chain
Machine Learning for Particle Image Analysis

o1 AL
Dk

Where we are...

& 1. Space point (track edges) + pixel feature annotation
@ 2. Vertex finding + particle clustering

@ 3. Particle type + energy/momentum

0 4. Hierarchy building

Aiming to complete the full chain v.1 in early 2019, move
to physics analysis applications

35



Sharing Our R&D
Machine Learning & Broader Impact

el A

pe Ty (U

Public Data Set: OSF Software Containers

OSFHOME ¥ My Quick Files My Projects ~ Search ~ Support  Donate .DeepLearnPhySICSv

Dashboard

DRGNS SVo[[IDEIEHCal Files wiki  Analytics  Registrations  Contributors ~ Add-ons  Settings

Make Private | Public | ¥ 0 | = PUBLIC | AUTOMATED BUILD

DeeplearnPhysics Public Dataset _
SP—— deeplearnphysics/ml-larcv2 ¢

Date created: 2018-12-03 01:23 PM | Last Updated: 2018-12-05 02:14 PM
Create DOI
Category: @ Project

Description:

Repo Info T Dock B D B
This Is a data sharing project organized by DeepLearnPhysics, a group of researchers developing ML techniques and applications for science. This project contains (at
least) 2 levels of sub-projects. The lowest level projects contain data files, and intermediate projects define group of applications and/or science domains. See the wiki for
more details.
License: CC0 1.0 Uni Short Description z

Wiki = Citation v

ML+LArCV2 docker container image builder
This is the top level project for data sharing sub-projects organized by
researchers in the DeepLearnPhysics organization. We aim to encourage Components
and maintain highly reproducible research work by other researchers
across different domains. We aim to achieve this by providing three things:

Add Component | Link Projects

Full Description £4
1. Publicly available data .
2. Publicly available software container © Open Samples for Liquid Argon Time
This project is... DeeplLearnPhysics
Read More Th a sub f sics f public data for e . o
rTPCs) LArCV: Liquid Argon Computer Vision
Files @ Image/Volumetric data processing framework developed for particle imaging detectors (LArTPC
T primarily though much of capability, if not all, is not constrained to it). Developed to interface
Click on a storage provider or drag and drop to upload ags .
(LAr)TPC experiment software data to a deep neural network frameworks. Get to know more
QFilter i . W
il Add a tag to enhance discoverability about this software @ our Wik
Name A v Modified A v
© DeeplLearnPhysics Public Dataset This repository provides larcv docker images with ML libraries (pytorch/tensorflow) as well as
other handy python modules. As a result, images tend to be big. For larcv image with minimal
set of libraries (no ML), look at this repository. For singularity images, checkout our s

huk ectior

Tags

All tags are built on the base linux images hosted in this repositor
o tf-1.12.0 (Dockerfile) ... tensorflow v1.12.0

¢ pytorch-0.4.1 (Dockerfile) ... pytorch 0.4.1

¢ pytorch-dev10152018-scn (Dockerfile)... pytorch development head (for v1.0.0 release),
tagged October 15th 2018, also include Sparse Submanifold Convolution external libraries.

docker

30



Sharing Our R&D
Machine Learning & Broader Impact

A

o1 A
b M\

DeepLearnPhysics (deeplearnphysics.org)

« Collaboration for ML technique R&D
- ~70 members including HEP exp/theory, nuclear physics, BES
(LCLS, SSRL), Cryo-EM, accelerator, AI/CS community

« Open source software/tools, containers, open data
- our framework to collaborate & share reproducible results
« Community building

- In-person tutorials (SLAC,LBNL,FNAL,BNL,VTech,MIT,Columbia...)
- Sharing talk invitations, job/funding opportunities, etc.

DeepLearnPhysics

Research Collaboration

Crdalab

Semantic Segmentation of LArTPC tracks
Previous » Current
Aug. 12,2018, 1 am. UTC Oct.2,2018, 1 am. UTC
[

Why segmenting pixels?

Collaborations
beyond HEP

»
A T LA 2240

V’g B s S
P14/

Hands-on workshop
@ SLAC/Stanford

TR AR
""‘"\r

ooooooo

Public challenge (collab. w/ LHC)


http://www.deeplearnphysics.org
http://deeplearnphysics.org
http://deeplearnphysics.org/authors.html
https://github.com/DeepLearnPhysics
https://singularity-hub.org/collections/459
http://deeplearnphysics.org/DataChallenge
https://competitions.codalab.org/competitions/19818#learn_the_details
https://competitions.codalab.org/competitions/19818#learn_the_details

Thank you!
for your attention :)

ook,

Take Away Messages

1. LArTPCs are high resolution particle imaging detectors

2. Deep neural networks (DNNs) are efficient image feature
extraction techniques developed in computer vision

3. DNNSs can be used for ML-based full data reco chain
4. Scalability can be addressed using SSCN (see Laura’s talk)

5. Reco chain 1s being developed toward physics results :)

38



Toward Full 3D Reconstruction Chain
Machine Learning for Particle Image Analysis

I~ Yo

Dk AN

Collaboration / Synergies

Wire LArTPC for 3D
« WireCell team (BNL) on SBN/DUNE
e Cluster3D (SLAC) on SBN
o LArFlow (Tufts) on MicroBooNE

Pixel LArTPC

 Interest from LBNL/UTA/Bern/MSU

- Looking forward to 2x2 ArgonCUBE modules
- Plan/Start working with students specifically for DUNE ND

Computing
« ANL demonstrating our code on distributed environment
« ORNL+FNAL colleagues to submit ALCC for Summit HPC
« FPGA-based inference system R&D (HEP-wide + beyond)



Back-up Slides



Next Neutrino Detectors?

uBooNE _
N

Bubble Chamber, ke

- L1q1d Argon Time PrOJectlonChamber

2015

» Chamber-like images: digitized electronics readout
» Calorimetric measurement + scalability to a large mass




How Wire LArTPC (MicroBooNE) Work (I)

1. Charged particles interact in LAr

e Jonize argon

* Produce scintillation light
2. Ionization e- drift toward anode
3. Wire planes detect drift e-

X=25m

k
/
/
/ ’/
2
Y
/
//
/
|
Cathode @ 70 kV Electric Field Anode
(plate) ~270 V/em (wire plane)

A

ur €

42



How Wire LArTPC (MicroBooNE) Work (I)

1. Charged particles interact in LAr

e [onize argon

® Produce scintillation light
2. Ionization e- drift toward anode
3. Wire planes detect drift e-

Cathode @ 70 kV
(plate)

Electric Field
~270 V/em

X=25m
7
e
I
N
(J6Y
=
Electrons
- y
/’
/
/
//
/
/
/
/
/
/ b‘&
/ N
VAN
/ 4
/ Scintillation Light
) / detected by PMTs
//
J
Anode

(wire plane)
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How Wire LArTPC (MicroBooNE) Work (I)

1. Charged particles interact in LAr

e Jonize argon
* Produce scintillation light

2. Ionization e- drift toward anode

3. Wire planes detect drift e-

Three

X=25m

Drift Time = X position

7Y

A

ur €

Scintillation Light
detected by PMTs

Cathode @ 70 kV
(plate)

Electric Field
~270 V/em

/
. /
/
/
J /
/
/Y
/7
/ Y
/
/
/
/
/’ Charge collected
/ by wire plane
Anode

(wire plane)

44




How Wire LArTPC (MicroBooNE) Work (1)
DUNE-ND

Pixel

1. Charged particles interact in LAr

2. Ionization e- drift toward anode

e Jonize argon
* Produce scintillation light

3. Wire-planes-detect drift e-

pixel detector

45

<

X=25m

Drift Time = X position

4

o
]
g?gg

J. Assadi et al. arxiv 1801.08884

>

\4

Ll
7 S

Cathode @ 70 kV
(plate)

Electric Field
~270 V/em

]
> & 7

YV

Charge collected
by pixel-pad plane

Scintillation Light
detected by PMTs

Anode
(wire plane)



https://arxiv.org/pdf/1801.08884.pdf

LArTPC: Particle Imaging Detector

... when things work ...

3D Imaging
(Pixel Detector)




100 cm

Challenges in Data Analysis?

100cm

s

There may be lots of backgrounds

Cosmlc Data Run 6280 Event 68’12 May 12th, 291/




Challenges in Data Analysis?

100 cm

R I. el
E =14 cmXx 14 cm. : | 5
—_— s’ Aj‘
o uBooNE ¢
c |
S L
Y~ ‘ :
\ 4 =200 Cm
MicroBooNE Aot /'
T Simulation — , i /

|

Interaction vertex can be anywhere
in LAr varying in size (cm meters)'

Cosmlc Data Run 6280 Event 6812 May 12th, 2016




Challenges in Data Analysis?
BooNE _ ..

! Cosmics

1 | -/ Cosmics

Identify neutrino interaction vertex, |
cluster individual particle energy depositions

Run 3469 Event 53223, October 21%, 2015 /
49

55 cm



Challenges in Data Analysis?

Deal with optical illusions in 2D projections
+ pattern recognitions in 3D

I uBooNP _

Run 1463 Event 23. August 15t 2015 10:37




; i

Image context analysis

ST A
g RGP Ll LT 2>
r._w..x,.. e .
[ p— .
i
| ~
3 |
1
S

1.12 woman

-0.28 in

1.23 white

r‘l'-

I
r 1 0.06 standing

-0.13 with

1.45 dress

3.58 tennis
1.81 racket
0.06 two
0.05 people
-0.14 in

0.30 green
-0.09 behind

G

“Pose” detection

Convolutional
Neural
Network

~ How does it work? ~



Machine Learning Overview
Simple neural network (perceptron)

The basic unit of a neural net is
the (loosely based
on a real neuron)

Takes 1n a vector of mnputs (x).

Commonly inputs are summed

with weights (w) and offset (b)
then run through activation.

N
X

—

Xo Wo

X1 i: 2
| I—

Neuron

Input Sum

O_()_C,):{wi-x+bi

O(x)

Activation
Output

wi-X+b >0
Wi-f+bi<0.

52



Machine Learning Overview

Simple neural network (perceptron)

size

domestication

from wikipedia

Imagine using two features to separate cats and dogs

o () = w; - X + b; wi-Xx+b >0
10 w;- X+ b; <O.

Output

20 — cat

d
X1 — ﬁ
By picking a value for w and b,
we define a boundary
between the two sets of data

o1 A
D AN

53


https://en.wikipedia.org/wiki/Perceptron

Machine Learning Overview
Simple neural network (perceptron)

What 1f we have a new data point?
Output
" x  —
N 0™~ 2 —, cat
0
e dog
X1 -

x f
s ) aV
L y 1]
>
domestication

from wikipedia

54


https://en.wikipedia.org/wiki/Perceptron

Machine Learning Overview
Simple neural network (perceptron) o

Dl AN

What 1f we have a new data point?

size

X1 —s 2

' We can add another perceptron
domestication
- to help (but does not yet solve the

from wikipedia problem)

55


https://en.wikipedia.org/wiki/Perceptron

Machine Learning Overview
Simple neural network (perceptron)

o1 A

P iy TN

What 1f we have a new data point?

24

Output
—

cat
22 - dog

S

> Another layer can classify based
2o on preceding layer’s output
from wikipedia (of non-linear activation)

56



https://en.wikipedia.org/wiki/Perceptron

Machine Learning Overview
Back to analyzing a cat “image...”

Goal: Dog or (Cat

Gy
I

k 1D array of discriminants

This part can be done
with a classic (fully-
connected) neural
network

How can we extract
“features” from “image”?

... the hard part...

(where I have failed for long)
57



Machine Learning Overview
Back to analyzing a cat “image...”

k 1D array of discriminants

This part can be done
with a classic (fully-
connected) neural
network

How can we extract
“features” from “image”?

Convolutional Neural
Network

58



Machine Learning Overview
Convolutional Neural Network (CNN)

convolutional
filter (kernel)
Ol1
\ 4
0]2 ——> X “neuron sum”
Ol1

“weights”

Jij(X) = O'(Wi - X+ bi),

N

Goal: Dog or (Cat

Gy
I

1D array of discriminants

»

)
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Machine Learning Overview
Convolutional Neural Network (CNN)

N

Goal: Dog or (Cat

Gy
I

convolutional 1D array of discriminants

filter (kernel)

o|1]o0 Apply many
filters
nv. Layer)

\ 4
ol2lo|—

®(Co
Oj1]0

“weights”

)

>
(]



Machine Learning Overview

Convolutional Neural Network (CNN)

>
)

convolutional
filter (kernel)
o|1]o0 Apply many
4 filters
0|2]0]——>® Conv. Layer)
N (Conv. alyer
“weights”

Down
sample

N

Goal: Dog or (Cat

Gy
I

1D array of discriminants

e.g.) Max Pooling
10124
56|78 6|8
3210 3|4
1/2(3 |4
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Machine Learning Overview
Convolutional Neural Network (CNN)

»
)

convolutional
filter (kernel)
o|1]o0 Apply many
4 filters
0|2]0]——>® Conv. Lager]
N (Conv. alyer
“weights”

Down
sample

N

Goal: Dog or (Cat

Gy
I

1D array of discriminants

Apply more
filters 1

- ; (Conv. Layer) ]




Machine Learning Overview
Convolutional Neural Network (CNN)

>
)

N

Goal: Dog or (Cat

Gy
I

convolutional 1D array of discriminants
filter (kernel)
oj1]0 ! Apply many
filters
0|2|0|—®
olilo (Conv. Layer) Repeat
weights Apply more \“
filters -

- (Conv. Layer) ]




Machine Learning Overview
Supervised Training of CNN

>
)

N

Goal: Dog or (Cat

“Loss”
(error)
IIIIII/I/I/I/I//II/I/I/I/I/I/I/I’
I
Differential L
convolutional operations 1D array of discriminants
filter (kernel) dL __ dL dz
olilo y dr = dz dx
X “Back-propagation”
ol2]o _)f(X,Y) propas
B Repeat
“weights”

Apply more
filters 1

(Conv. Layer) ]

T R



Machine Learning Overview
Summarizing CNNs

o1 A

P iy TN

e CNNs are “feature extraction machine”

- Consists of “convolution layers” with “kernels”
- A chain of linear algebra operations = “massively parallel”
» Suited for acceleration using many-core hardwares (e.g. GPUs)

« CNN: data < distribution “Mapping” (transformation)

Input Image

Down-sampling
Feature Maps

(s

After Discriminants

After 3rd conv. laver

2nd conv. laver

After
1st conv. laver
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DNN for LArTPC Data Reconstruction

How does
U-ResNet Work?

Concatenation of 512 x 512 tensors

(I High spatial resolution mfo« " . \ Intermediate
512X 512X 6 . . e} 512X 512X 64
S Concatenation of tensors ? ?

\ at all spatial dimensions / 512
(32, 64, 128, 256)

Repeat Repeat 4 .
1/2 down-sampling 1=+ sereeriasannrerians >  x2 up-sampling Interpolation filters

+ ResNet convolutions + ResNet convolutions (up_ sam pl i n g)
\ | |||||| / .+ Convolutions
o’ « 9 [
—l Intermediate (“learnable” filter)
8 .‘ (most contracted)
6 16 x16 X 1024
U-ResNet

Down sampling + Convolutions to identify
highly abstract features (e.g. “human face”)




Validation with real data




Benchmarking SSNet w/ Real Data
Samples (100 images per sample per sim/data)

A cosmic ray muon decay
- Involves both “track” and “shower”, simple and intuitive.

Neutrino interactions
- More complicated: varying particle types and multiplicity

Example a
Muon decay / |

“’ / MicroBooNE Data

Preliminary
o
’ 68 In-Progress




Decay Muons: Example Displays

MicroBooNE Data
Preliminary
In-Progress

1800 1850 1900

Wire

N

MicroBooNE Data
Preliminary
In-Progress

1850 1900 1950 2000 2050 2100
Wire

Input Image

MicroBooNE Data
Preliminary
In-Progress

1750 1800 1850 1900
Wire

MicroBooNE Data
Preliminary
In-Progress *

1850 1900 1950 2000 2050 2100
Wire

Human Label

MicroBooNE Data
Preliminary
In-Progress

1750 1800 1850 1900

Wire

MicroBooNE Data
Preliminary
In-Progress !

1850 1900 1950 2000 2050 2100
‘Wire

SSNet Label




4 Visually Picked “Busy Neutrino Events”

>800 MicroBooNE Data

Preliminary
5600 In-Progress

5400}

Q
E5200
=

5000
4800}

4600
800 900 1000
Wire

Preliminary
In-Progress

>800 MicroBooNE Data

Preliminary
5600 In-Progress

5400
]

£5200
=

5000

4800

1100 1200 900 1000 1100 1200
Wire

Preliminary
In-Progress

2750 2800 2850 2900 2950 3000 3050 2750 2800 2850 2900 2950 3000 3050

Wire

Wire

Input Image Human Label
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>800 MicroBooNE Data

Preliminary
5600 In-Progress

5400

Q
£5200
H

5000

4800

1000 1100 1200
Wire

MicroBooNE Data-
Preliminary
In-Progress

2750 2800 2850 2900 2950 3000 3050
Wire

SSNet Label




Overall Performance

 Data/Simulation agreement within statistical error
- No systematic error included

« Network does better than a human analyzer (sim.)

Image Fraction

Muon Decay

Disagreement rate mean/std in %

Sample

Data

Simulation

Simulation

Simulation

Label

Physicist

Physicist

Simulation

Simulation

Prediction

U-Resnet

U-ResNet

U-ResNet

Physicist

ICPF mean

1.8

2.6

2.5

2.3

ICPF 90%

3.3

4.4

4.5

3.1

Shower

6.2

5.7

4.0

3.9

Track

1.1

1.9

1.6

1.3

°

©

°©

t

Data
Simulation

Human vs. Network
Disagreement pixel

fraction per event

(100 images)

0.10

Pixel-Label Disagreement Fraction

Neutrino w/ Gamma

Disagreement rate mean/std in %

Sample

Data

Simulation

Simulation

Simulation

Label

Physicist

Physicist

Simulation

Simulation

Prediction

U-ResNet

U-ResNet

U-ResNet

Physicist

ICPF mean

3.4

2.5

1.8

2.0

ICPF 90%

9.0

5.7

4.6

4.8

Shower

4.8

3.4

3.0

2.6

2.7

2.4

2.2

2.9

Image Fraction
© o © o o
N W

o©
=

o
[='=)

Data
Simulation

Human vs. Network
Disagreement pixel
fraction per event
(100 images)




Decay Muons: Pixel Value Variation

Studied how network performance varies when pixel
values are scaled by a constant factor

Data
MC

MicroBooNE Data g s MicroBooNE Data

Preliminary - : : Preliminary
In-Progress ' SE In-Progress
= :

i i ¥ e NP A 1 S o . O DR
40 60 80 100 120 140 160 180 200 40 160 180 200
Peak Pixel Value Peak Pixel Value

No scaling

Scaling Factor 0.75 0.95 1.00 1.05
Track 2.38 1.40 1.14 | 1.16

Shower 5.24 6.11 6.16  6.11
Combined 2.75 2.02 1.81 1.85

Change in the mean error rate is within 1% when
pixel values are scaled within 20%, fairly robust



Decay Muons: Inter-Pixel Correlation

Study, qualitatively, how network reacts to
interesting portions of an image

Region1 .
Bragg peak _
Region 2
Low energy
electron

Region 0 ...

o2
4
»

MIP part of a track

MicroBooNE Data
Preliminary
In-Progress

3000 3050 3100
Wire




3D Data Reconstruction @ SLAC

=
O
=
D
-
5
1
=
=

ML can be started above age of 60

wing

e Sho




Progress Report
Machine Learning & Data Reconstruction

DN
S } Data ° ° °

o3 | -muaion]| Technique Validation on Data
=
£ 0.6 MicroBooNE | o e
: oo MicroBoolE Same paper ... arX1v.1808.f)7260 |
S04 - Important for new techniques such as this
E., = « Compared physicist vs. network predictions

0.00 0.6; 010 015 020 025 030 MicroBooNE

Pixel-Label Disagreement Fraction

Data
MicroBooNE
Data



https://arxiv.org/abs/1808.07269

Future/On-going Projects
Drawbacks of supervised learning & mitigations

ol AR

What can we do about imperfect simulation?

« Problematic: the “signal distribution” learnt by the
algorithm may be different in two domains!

. in ML domain?
- Can try CNN to “locate” where it is

Data

“Where are discrepancies”

/ ﬁf‘ @ pixel level
N\ / Semantic
)( f %K/ Segmentation f %k
\ / %k N\ “data vs. sim”

\ Overlaid

Simulation
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Future/On-going Projects
Drawbacks of supervised learning & mitigations

ol AR

What can we do about imperfect simulation?

« Problematic: the “signal distribution” learnt by the
algorithm may be different in two domains!

. in ML domain?
- Can try CNN to “locate” where it is
- Can try CNN to “fix” the discrepancy

Data

/ ;f‘ Data or Simulation?
\/

1/

Simulation
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Future/On-going Projects
Drawbacks of supervised learning & mitigations__ |

What can we do about imperfect simulation?

« Problematic: the “signal distribution” learnt by the
algorithm may be different in two domains!
. in ML domain?

- Can try CNN to “locate” where it is
- Can try CNN to “fix” the discrepancy

Data

ﬁr N / Data or Simulation?  Generative Adversarial Network
Can learn the “mapping” between the
data and simulation “distributions”.

The generator network can be used as
\ \ a synthetic image generator to train
N\ \

different neural networks

Simulation Synthetic simulation
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Future/On-going Projects
Drawbacks of supervised learning & mitigations

ol AR

Dk AN

What can we do about imperfect simulation?

« Problematic: the “signal distribution” learnt by the
algorithm may be different in two domains!

« Mitigation techniques in ML domain?
- Can try CNN to “locate” where it is
- Can try CNN to “fix” the discrepancy
- Can try a training technique to minimize the effect

oL, oL,
P Q\_/ T a0, Closs L,> Maximize the loss for
[> ﬂ ﬂ [> E class label ; discriminate data vs. simulation,
E> E> E> E> N feature extractors are penalized
| L m label predictor G, (- 6,) to key on simulat.ion specific
J?OO \ 00 @ g domain classifier Gy(+;64) lnformatlon
s : /f :90, —— A
* feature (‘XTI'IT()I‘ Gy(0 / @f ’75 Minerva Paper arXiv:1808.08332
|:> |i> a domain label d ) . L.
oL, Domain-Adversarial Training
E> of Neural Networks
_ forwardprop  backprop (and produced der ves) w 79



https://arxiv.org/pdf/1505.07818.pdf
https://arxiv.org/abs/1808.08332

