Trigger simulation studies

Animesh Chatterjee¹ Andrea Falcone² *Gianluca Petrillo*³ Yun-Tse Tsai³

¹University of Texas at Arlington, U.S.A.

²Istituto Nazionale di Fisica Nucleare, Pavia, Italy

³SLAC National Accelerator Laboratory, U.S.A.

ICARUS Collaboration meeting, September 19, 2018

Triggering strategy overview

Fast trigger implemented in hardware:

- identify the activity within the BNB and NuMI beam gates (1.6 µs and 8.6 µs respectively)
- tag optical activity as signal-like or background-like (background includes cosmic rays, optical detector noise, radioactivity...)
- cross with Cosmic Ray Tagger data to veto cosmogenic background
- resolve to the bunched substructure of the neutrino spill? (BNB: 81 1 ns-wide bunches, 19 ns apart)
 - \rightarrow optical timing resolution of $\mathcal{O}(1 \text{ ns})$ should allow it

Rates in a nutshell

- beam gate opening: 5 Hz (BNB), 0.53 Hz (NuMI)
- expected neutrino interactions: 0.03 Hz (BNB), 0.007 Hz (NuMI)

The studies may be divided in two stages:

pure simulation studies, targeted to ...

- ... inform aspects of the design of the trigger system
 - \rightarrow discrimination thresholds
 - \rightarrow pattern for consolidation of pairs of channels
- ... predict trigger rates for selected physics processes

 \rightarrow define target efficiency and data rate

first data studies measuring trigger efficiency from data

 \rightarrow provide tools that collaborators can use for their signal

The plan

In this first stage (pure simulation), we focus on trigger design:

- validate the optical simulation using single signal-like muon events
 - \rightarrow learn about timing structure, amount of collected light, optical detector noise, topology of the response
- e study pure signal events
 - \rightarrow learn how our target events look like
- study empty events
 - \rightarrow learn how noisy is the noise
- study cosmic ray background samples
 - \rightarrow learn about resolution between different physics events, time-wise and space-wise
- Output develop discrimination and test it on signal+background samples
- **(**) parametrise trigger efficiency for key signals (u_{μ} , u_{e}) and tune it
- study other relevant processes (e.g. NuMI neutrino events)

The effort will be documented into an internal note.

The two stages of study have different prerequisites:

trigger simulation (for design and prediction of efficiency):

- \rightarrow generated samples (μ , ν_{μ} , ν_{e} , cosmic rays, ...)
- $\checkmark\,$ decent parametrisation of PMT noise
- ✓ simulation of the PMT readout output
- $\rightarrow\,$ understanding of the CRT data and its flow

trigger validation on data (commissioning analyses):

- zero-bias data
- validated noise model
- full detector simulation (PMT, TPC, CRT)
- full reconstruction of time ("*t*₀"), tracks and showers

The status

- the simulation study effort has just started!
- we need to produce or enrich all the relevant simulated samples:
 - available: single muons, single electrons, BNB neutrino interactions
 - in progress: cosmic rays, with and without signal overlaid
 - not started: empty events, NuMI neutrino events, single protons
 - $\rightarrow\,$ need to add simulated noise to PMT waveforms
- the optical simulation in the new samples needs to be validated
 - \rightarrow both amount of light and arrival time distributions
- PMT readout simulation is in place
 - noise model is based on a completed measurement with our PMTs, uncoated and in LAr
 - the current test stand at CERN may inform us further
 - this is the input to the trigger logic
- some simple code simulating the trigger response is in place

• planning to be done:

- now: develop a plan to take advantage of CRT
- next: consider the possibility of utilising TPC information
- soon: develop a plan for testing on the first data (and make sure we and DAQ stay on the same page)

work to be done:

- Thanksgiving present: thresholds and topology of signal events
- Christmas present: time resolution
- St. Patrick clover: tuning for muon signal, and trigger primitive recommendation
- Easter egg surprise: efficiency and rate expectations

⇒ coordination with: PMT, CRT, DAQ, reconstruction, SBN[-ND]

Thank you for your attention Discussion and ideas: 3... 2... 1... go!

Highlight on our unique roles and expertise:

Animesh Chatterjee at Fermilab, contact with CRT development

- Andrea Falcone optical simulation expert
- Gianluca Petrillo software expert
- Yun-Tse Tsai data acquisition expert

<YOUR NAME HERE> lot of work to do! helping this effort, you'll...

- ... learn a lot about trigger and optical systems
- ... get experience in simulation
- ... learn a bit of every other subsystem and of DAQ

- expected exposure: $\approx 6 \cdot 10^{20}$ protons on target
- expected data size: \approx 100 MB/event

	BNB	NuMI	CNGS
p.o.t. per spill	5 · 10 ¹²	4 · 10 ¹³	
spill width	1.6 µs	8.6 µs	10.5 µs
extraction rate	5 Hz	0.53 Hz	
ν interactions (T600)	1 every 180 spills	1 every 150 spills	
beam-related (halo,)	1 every 210 spills	n/a	
in-spill cosmic rays	1 every 55 spills	1 every 10 spills	
total expected rate	1 every 35 spills	1 every 9 spills	

Source: DocDB 5505