Status of CRT Simulation and Reconstruction

Chris Hilgenberg Colorado State University

I MAGING COSMIC A NR RURE UNDERBROUND SIGNALS ICARUS Collaboration Meeting 19-20 September 2018 Fermilab

Geometry

- Note actual system does not provide 4π coverage!
 - Sparse coverage on bottom due to installation constraints
 - Mechanical mounting/layout of top/sides is work in progress – latest updates not included in MCC1
 - Geometric efficiency expected to improve
- Each CRT module approximated as polystyrene strips contained in an Al box
- Mounting structure not yet included significant amount of material will impact rate of beam induced CRT signals

Outer cryostat CRT strips

Geant4 Validation

- Cosmic mu sample from CRY
- Consistent with previous results (internal note *Cosmic Ray Tagger*. M. Nessi, U. Kose, P.R. Sala, et al. 20 May 2015)
- Geometric efficiency entering the LAr active volume
 - Hitting 2 or more CRT strips: 98.6%
 - Hitting one or more CRT modules ("vector") per CRT region (e.g. top
 → bottom): 34.5%
- Rates
 - In CRT (strips hit not trigger rate): 35 kHz
 - In fiducial volume (same as SBN proposal): 11 kHz

CRT Subsystems

- See Bob's talk from Wednesday morning for more technical overview and status
- Top - Self-contained coincidence units in X-Y configurat 1.8m - 2 layers / module, 8 scintillator strips / layer, 2 WLS fibers / strip 60 mn 60 mm - Single ended readout LIPTO 8 230 mm • Sides REFLECTIVE SEAL SiPM TIO₂ LOADED POLYSTYRENE CAP - 1 layer / module, 20 1 WLS fiber / strip **SiPM** strip strip - Dual ended readout fibers fibers POLYSTYRENE SCINTILLATOR - Upstream (South) face in X-Y configuration (from Ed Blucher, UChicago) Al skin for module - Downstream (North) face same as upstream for now, 3625 mn 3225 mn but won't be the case (layout not yet known) FE card M64 - Lateral sides in X-X configuration 625 Bottom • - 2 layers / module, 32 strips / layer, 1 WLS fiber / strip Fiber holder Mirrored fiber ends Fiber routing - Single ended readout
- 20 September 2018

Hilgenberg

Scintillator strips

Test Sample: µ's as Cosmics

- Single particle gun
- Initial position just below overburden and above top CRT modules
- Initial distribution footprint centered over and confined to single cryostat (useful for other studies)
- Angular distribution cosmic like
- Momentum 5 GeV
- 200 primary µ's

Test Sample: µ's as Cosmics

- Single particle gun
- Initial position just below overburden and above top CRT modules
- Initial distribution footprint centered over and confined to single cryostat (useful for other studies)
- Angular distribution cosmic like
- Momentum 5 GeV
- 200 primary µ's

CRT Detector Simulation

- Geometrical
 - Attenuation in bulk (transverse) and in WLS fiber (longitudinal)
 - Propagation delay with amplitude dependent smearing
- Light Yield (LY)
 - Expect $LY_{Top} > LY_{Sides} > LY_{Bottom}$
 - For now, use parameterization obtained from side CRT test data
- Poisson fluctuated LY at photosensor
- Front-end electronics
 - Nominal pedestal, gain measurement taken from side CRT test data
 - Amplitude dependent smearing of time from descriminator, interpolator
 - 22µs dead time, track-n-hold effect, rapid hit biasing
 - Trigger logic different for each subsystem
 - Top: SiPM-SiPM coincidence in strip, coincidence between X-Y layers in a module
 - Sides: one or more strips per module, coincidence between adjacent layers
 - Bottom: one or more strips in a module, coincidence between X-X layers in a module

MIP Energy Deposited

- Light yield and, pedestal, and gain modeled from side CRT test data taken over summer 2017
- Dark noise is not included here significant for SiPMs
- Coincidence requirements eliminate most of dark noise effect so secondary concern at this point

CRT Tagging Efficiency

- At least 1 CRT trigger corresponding the offending track
 - Can only provide CRT "hits" (position and time)
 - With this clean sample (kindly avoiding gaps), 99.9% tracks tagged
- At least 2 different CRT modules trigger
 - Can reconstruct a "vector" to project the track into the TPC
 - Useful for calibration, efficiency studies
 - With this sample, $\sim 40\%$ tracks tagged as vectors
- Expect tagging efficiencies to worsen using cosmic samples (work in progress)

CRT Reconstruction

- Development just getting underway, borrowing from work done in SBND
- First step is to construct CRT hits from DetSim products, different for each subsystem
- Top
 - X-Y configuration (in principle) has position resolution (σ_x) ~ 7cm
 - Accidental coincidences, threshold effects can cause problems
- Upstream side: X-Y, $\sigma_x \sim 3$ cm
- Other sides:
 - X-X, strips parallel to X-Z plane
 - $\sigma_{\rm vertical} \sim 2.4 cm$
 - If readout triggered at only 1 end, $\sigma_{horizontal} \sim 2.3m$
 - If readout triggered at both ends, both FEBs in coincidence, time difference gives position
 - Dual ended $\sigma_{horizontal} \sim CRT$ time resolution (σ_t), e.g. $\sigma_t = 2ns$ gives possible $\sigma_{horizontal} \sim 30cm$ (not yet implemented)

First Look at CRT Hits

20 September 2018

Hilgenberg

Summary

- The CRT simulation has been validated with cosmic and single muon samples
- A front-end centric simulation with data products similar to what expected for DAQ
- The LY spectra and electronics effects have been tuned from side CRT test data
- The first step has been made in CRT reconstruction
- Truth matching study underway to understand reconstruction resolution

Next

- Tune CRT timing simulation for trigger studies
- Continue development of CRT reconstruction tools for cosmic muon removal
- Reproduce and extend previous studies on cosmogenic γ 's, update impact on v_e analysis
- Study possible trigger configurations of interest for acquiring background and calibration samples, useful for DAQ group