Optimisation of computing resource usage

for code authors

Gianluca Petrillo

SLAC National Accelerator Laboratory, U.S.A.

ICARUS Collaboration meeting, September 20, 2018

N

e. ‘ h NATIONAL

——=@® ACCELERATOR

QHHV LABORATORY

G. Petrillo (SLAC) Optimisation of computing resource usage ICARUS, 20-Sep-2018


https://sbn-docdbcert.fnal.gov/cgi-bin/cert/DisplayMeeting?sessionid=4084

Topics in this talk

I'll talk of “optimisation”:

£ using the minimum amount of computing resources (memory, processing
power, storage, network bandwidth) needed to complete a task

@ will go through a few recent examples of optimisation
@ will tell about do-it-yourself resource profiling

G. Petrillo (SLAC) Optimisation of computing resource usage ICARUS, 20-Sep-2018 2/11


https://sbn-docdbcert.fnal.gov/cgi-bin/cert/DisplayMeeting?sessionid=4084

The tools

CPU time can be measured at two levels:
@ art TimeTracker service reports time for each module
@ ARM Forge map performs sampling profiling’
e reports how long each function takes to execute
e licensed by Fermilab, available only on FNAL GPVM
memory can also be measured at two levels:
@ art MemoryTracker Service reports memory usage after each
code module
@ valgrind massif tool
e detailed tracking of what allocates how much memory
e x50 slow down compared to regular run

Discussing the findings with experienced collaborators helps a lot.

That is to keep asking your program “what are you doing now?” (every 10 ms).

The reports of none of these tools are straightforward to interpret. J

G. Petrillo (SLAC) Optimisation of computing resource usage ICARUS, 20-Sep-2018


https://cdcvs.fnal.gov/redmine/projects/art/wiki/TimeTracker
https://cdcvs.fnal.gov/redmine/projects/art/wiki/SQLite_help#MemoryTracker-and-TimeTracker-queries
https://cdcvs.fnal.gov/redmine/projects/art/wiki/Getting_started_with_MAP_and_DDT
http://allinea-lic.fnal.gov:4241/status.html
https://cdcvs.fnal.gov/redmine/projects/art/wiki/MemoryTracker
https://cdcvs.fnal.gov/redmine/projects/art/wiki/SQLite_help#MemoryTracker-and-TimeTracker-queries
https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/Memory_profiling_tools#Memory-use
https://sbn-docdbcert.fnal.gov/cgi-bin/cert/DisplayMeeting?sessionid=4084

Recent optimisation: photon visibility map

@ we ask LArSoft to use a lookup table to tell which fraction of photons is
visible from each point of the TPC

@ building that table takes a lot of time and many parallel jobs

@ it also used to take gigabytes of memory
* because it kept track of the whole TPC volume

@ by limiting each job to a small part of the TPC volume, the memory required
for each job decreased to... negligible

Lesson learned
@ a careful workflow choice can make the difference

@ some coding was required to make it pay though

Diagnostic tool: valgrind massif.

G. Petrillo (SLAC) Optimisation of computing resource usage ICARUS, 20-Sep-2018 4/11


https://sbn-docdbcert.fnal.gov/cgi-bin/cert/DisplayMeeting?sessionid=4084

Recent optimisation: services configuration

@ each job needs the right set of art/LArSoft services
@ we used to load “all” of them
@ e.g., would load the 1.5 GB photon visibility library for nothing

@ the service configuration has been reorganised so that presets fit most
common situations: icarus_basic_services,

icarus_wirecalibration_services, icarus_detsim_services, ...

Lesson learned

@ start with no LArsoft service, add them as crashes tell you to
(tedious and very effective)

Diagnostic tool: MemoryTracker.
Configuration files servi ces_lcarus.fcl and servi ces_lcarus_simulation.fcl
(fc1/services path in icaruscode source tree) have some documentation at top of the file.

G. Petrillo (SLAC) Optimisation of computing resource usage ICARUS, 20-Sep-2018 5/11


https://sbn-docdbcert.fnal.gov/cgi-bin/cert/DisplayMeeting?sessionid=4084

Recent optimisation: Gaussian hit fitting

@ GausHitFinder algorithm parametrises a time slice of TPC channel
waveform with a superposition of Gaussian “hits”
@ on an event with 100k hits, it would takes hours and GB of memory

@ the code was on each fit creating a new fit function from a string, which
ROOT would compile with Cling...

’ TF1 Gaus ("Gaus",equation.c_str(),0,roiSize);

@ replaced with a pool of prebuilt fit functions instead
@ now it takes minutes

Lesson learned
@ be mindful of side effects when creating ROOT objects

Disgnostic tool: ARM Forge map. Inconsistent report needed some creativity.

6/11

G. Petrillo (SLAC) Optimisation of computing resource usage ICARUS, 20-Sep-2018


https://sbn-docdbcert.fnal.gov/cgi-bin/cert/DisplayMeeting?sessionid=4084

Recent optimisation: ICARUS hit fitting

@ ICARUSHitFinder algorithm parametrises time slices of TPC channel
waveform with terms based on the form —e-"21/%_
1—e (x—p3) /P4

@ one fit function was computing the same exponentials in a loop:

for (int js=0; js < floor (par[7*jp+6]); Js++) {

fitval += (l.+Jsxpar[7xJjp+7]1) *(
par[7+Jp+l] +par[7+jp+2]+TMath: :Exp (- (x[0]-par[7+Jp+3]) /par[7+Jp+ai])

/ (1+TMath: :Exp (- (x[0] —par[7*Jp+3]1) /par[7+Jp+51))
)/ (par [T+3p+61);

}

@ rewritten the function factorising the repeating terms
@ on an event with 100k hits, used to take hours; now, a couple of minutes

Lesson learned
@ pay attention to the form of the math formulas

Disgnostic tool: ARM Forge map, blaming tuach: :exp Of taking 90% of CPU.

ICARUS, 20-Sep-2018

G. Petrillo (SLAC) Optimisation of computing resource usage


https://sbn-docdbcert.fnal.gov/cgi-bin/cert/DisplayMeeting?sessionid=4084

Recent optimisation: PMT signal simulation

@ SimPMTIcarus algorithm simulates PMT waveforms adding one template
photoelectron shape for each scintillation photon reaching the PMT
@ photons were added one at a time, which would take too long:

for (auto const& ph : photons)
AddPhoton (ph, fFullWaveforms [photons.OpChannel () ]);

@ rewritten into a two step algorithm:

@ collect the number of photons arriving at each PMT sampling tick

@ add for each tick all the photons at once scaling the template
@ enabled use special instructions (SIMD), reduced precision (double — single)
@ running time halved

Lesson learned
@ rethink the code and be willing to pay a bit with memory

Disgnostic tool: ARM Forge map, precisely pointing to a += operation.

G. Petrillo (SLAC) Optimisation of computing resource usage ICARUS, 20-Sep-2018 8/11


https://sbn-docdbcert.fnal.gov/cgi-bin/cert/DisplayMeeting?sessionid=4084

Conclusions

@ making your code use just the minimum resources is not easy
@ yet, at a certain point in the development, it makes sense to spend half a day
in understanding if there are problems
— take a look at a test checklist suggestion
— the software/reconstruction group will give you support
@ production team should be given one week of time to test frozen code before
starting the production

e without testing, wasted time is typically more than one week
e production has, at various times, been seriously slowed down by these issues

Once again: if it's overpowering you, ask the software group for help. J

G. Petrillo (SLAC) Optimisation of computing resource usage ICARUS, 20-Sep-2018 9/11


mailto:icarus-software@fnal.gov
mailto:icarus_reconstruction@fnal.gov
https://sbn-docdbcert.fnal.gov/cgi-bin/cert/DisplayMeeting?sessionid=4084

Thank you for your attention

Many thanks to all the people in the software and production groups! J

G. Petrillo (SLAC) Optimisation of computing resource usage ICARUS, 20-Sep-2018 10/11


https://sbn-docdbcert.fnal.gov/cgi-bin/cert/DisplayMeeting?sessionid=4084

Checklist to test the code

when: when the structure of the code is complete and you are shifting into
tuning the physics
input: an unforgiving sample; e.g., if the code is at all supposed to be run on
cosmic background, test input sample should contain that background
configuration: use prof qualifier; two job configuration (FHICL) files:
@ preparation: everything your code needs as input; run only once!
@ test: only your module(s), services your code needs,
TimeTracker/MemoryTracker, no ROOT output
tools: two local runs (icarusgpvm01 Or icarusbuild01):
@ aregular one, with enough events for a 1/2 hour run
@ a run profiled with ARM Forge map, 2-5 events
alarm bells: — more than 2 GB of resident (RSS) memory: why is that?
— a single function taking 80% of the time
e can it be made faster?

G. Petrillo (SLAC) Optlmlsatlon of computing resource usage ICARUS 20-Sep-2018


https://sbn-docdbcert.fnal.gov/cgi-bin/cert/DisplayMeeting?sessionid=4084

	Appendix

