带Fermilab

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Flux window from off axis NuMI

Minerba Betancourt
September 202018

First Step

- Use the latest MINERvA flux and run GENIE using the detector coordinates
- GENIE needs specific a window to generate the flux
icarus_geo_5mar2018.gdml

Cartoon for illustration

GENIE events at ICARUS from NuMI off axis

- Ran 50000 events (nue, nuebar, numu and numubar): 5.8el8 POT
- NuMI produces about 5.5 e20 POT per year

Neutrino Interactions

- Ran 50000 events (nue, nuebar, numu and numubar): 5.8el8 POT

QE 19721 MEC 7325 RES 12317 DIS 7396

QE 708 MEC 266 RES 618 DIS 249

Neutrino Interactions at Fiducial Volumen

- Applying fiducial cuts $\sim 20 \mathrm{~cm}$ cut from the edge of the detector

Neutrino Interactions at Fiducial Volumen

- Ran 50000 events (nue, nuebar, numu and numubar): 5.8eI8 POT
- Applying fiducial cuts $\sim 20 \mathrm{~cm}$ cut from the edge of the detector
$v \mu+v \mu$ bar

QE 5201 MEC 1931
RES 3130 DIS 1888
ve+ve bar

QE 189 MEC 61
RES 156 DIS 60

Neutrinos and Antineutrinos

- Muon neutrino and muon antineutrino

Quasi Elastic Scattering Measurements

- MINERvA experiment measured quasi-elastic interactions with 2 tracks
- Differential cross section in initial struck neutron momentum Pn_{n}
- One muon, no pions and at least

Phys.Rev.Lett. 121 (2018) no.2, 022504

Prediction for ICARUS

- One muon, no pions and at least on proton with momentum>300 $\mathrm{MeV} / \mathrm{c}$

Next

- We need to generate a good sample of neutrino interactions and reconstruct the events to start some analysis
- Include the flux constraints from the MINERvA experiment, MINERvA had used external data to constraint the NuMI flux

Back Slides

Transverse Kinematic Imbalances (CCQE-like sample)

- Differential cross section in transverse boosting angle $\delta \alpha_{T}$
- The transverse boosting angle $\delta \alpha_{T}$ represents the direction of the transverse momentum imbalance

Transverse Kinematic Imbalances (CCQE-like sample)

- Differential cross section in transverse boosting angle $\delta \alpha_{T}$
- The transverse boosting angle $\delta \alpha_{T}$ represents the direction of the transverse momentum imbalance

$$
\begin{aligned}
\delta \vec{p}_{\mathrm{T}} & \equiv \vec{p}_{\mathrm{T}}^{\ell^{\prime}}+\vec{p}_{\mathrm{T}}^{\mathrm{N}^{\prime}} \\
\delta \alpha_{\mathrm{T}} & \equiv \arccos \frac{-\vec{p}_{\mathrm{T}}^{\ell^{\prime}} \cdot \delta \vec{p}_{\mathrm{T}}}{p_{\mathrm{T}}^{\ell^{\prime}} \delta p_{\mathrm{T}}}
\end{aligned}
$$

CCQE-like: One muon, no pions and at least one proton with momentum $>450 \mathrm{MeV} / \mathrm{c}$

