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Silicon refractive index

The dispersion producing the best fit to measurements at ambient room
temperature (293 K) [D.F. Edwards, Silicon (Si). In: E.D. Palik, Editor,
Handbook of Optical Constants of Solids, Academic Press Inc. (1985)
pp. 547-569, ISBN 0-12-544420-6] with the following modified Sellmeier
expression (e = 11.7, A; = 1.1 pm):
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Approximations

Large value of € &~ 12 makes reasonably good a model of perfectly
conducting metal. We assume a metal bar of radius a and length /
located at a distance d from the beam orbit. If the bunch length

0, > d, then the field on the bar is a slow function of time, and one can
use electrostatic approximation to solve the fields.
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An integral equation
( is coordinate measured along the bar.
The potential generated at point ( of the bar at time t is

ba(t,0) = —2Ag(t)Inv/d2 + 2
where Ag is the charge per unit length of the bunch
Q g
Ag(t) = —— e t€ /207,
g(t) o

This potential should be compensated by the image charge on the bar.
A(t, C) is the charge per unit length of the bar. In the limit a < /, d, the
potential generated by the image charge on the surface of the bar is

Gim(t, 0) ~2A(£, ) In (23’) + AW D In(L = /1) + Aty =) In(/1 + 1)
! 4
—J daA'(r,a)ln(a—a//+J dEA (£, E)In(C — £)/1.
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The sum of two potentials does not depend on C
Gim(t, Q) + ds(t, 0) = dolt)
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Digression: charge distribution on a thin wire

This integral equation can be used to find charge distribution on a thin
metallic wire of round cross section, J. Jackson, American Journal of
Physics, vol. 68 (2000)
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The question of the equilibriumn linear charge density on a charged steaight conducting “‘wire”” of §
finite length as ifs cross-sectional dimension becomes vnishingly sl relative o the lengih is H
revisited in our didactic presentation. We first consider the wire as the limit of a prolate spheroidal =
2
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Fig. 3. Comparison of Eq. (26), normalized to unity at 2= 0, with numerical
calculations. (a) Sakar and Rao (Ref. 9), A=13.82 (solid triangles: solid dot
is mean position weighted according to the shape of (26)). (b) Waterman
and Pedersen (Ref. 10). A= 15 (dashed curve is empirical fit to their nu-
merical results; see text). Note the suppressed zero for the ordinates.
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Geometry of the experiment

One of realizations of Strip-type bent crystals

This is THEP device N1
for efficient (85%)
extraction

Device N2 - big angle, long crystal
Bent crystal parameters are: 150 mrad bend,
100 mm length and 12 mm width

Small angle - few mrad
minimal material

Device N3 - strong curvature.
Big angle over short length.
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Numerical solution

To solve the integral equation, we need to specify parameters. |
chose: 2/ =5cm, d =13 mm, a=1.5 mm.
| seek numerical solution in the form of expansion

N int
At, Q) = Z o, (t) cos (7)

n=1
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Numerical solution

Numerical solution for N,, = 10.

#, A©Q)

Z,cm

8/10



Kick on the beam

The kick on the beam in the direction perpendicular to the orbit is
due to the electric field of image charges:

! d —31.2
Em)J_/d&A(t,C)(d2+C2)3/2 = ()
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Kick on the beam

The integrated kick for the nominal number of particles in the
bunch Np = 1.15 x 101 is

—31.2¢2N, MeV
ApL:eJ'thL(t): 31.2e7Np _ o 5Me
cm c
The deflection angle
0.5 MeV
— = _73%x10°8
0 eV 7.3 x 10~ °rad

The angular spread in the beam (e =3.75 x 107® m, 3 = 100 m)

5% 6
— =22x10
V B

Correspondingly, the deflection angle will result in the orbit bump
~ 7.4 micron.

Conclusion: it seems that the effect of the crystal on the beam is
small. A better understanding of the numerical solution of the
integral equation is desirable.

10/10



