

Deverlopment of 3D Data Reconstruction Chain using Deep Neural Network DUNE LATTPC Pixel Workshop

Kazuhiro Terao

SLAC National Accelerator Laboratory

Deverlopment of 3D Data Reconstruction Chain using Deep Neural Network DUNE LATTPC Pixel Workshop

Outline 0. ML-based 3D Reconstruction 1. Progress & next steps 2. Challenges to be addressed

ML-based 3D Data Reconstruction

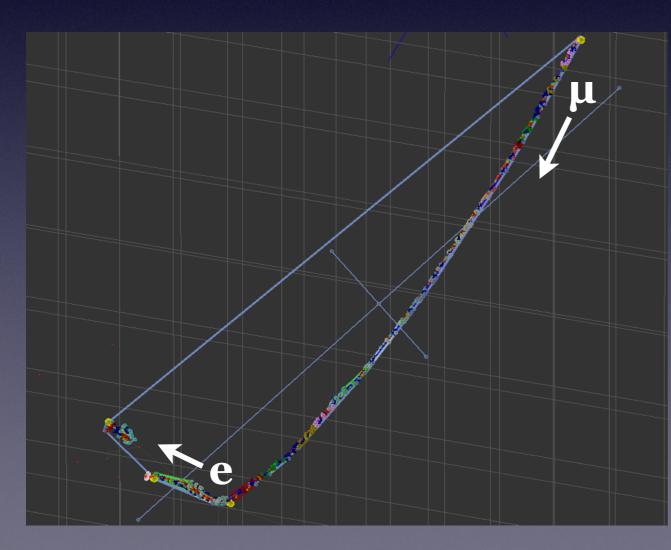
1001

3D Data Reconstruction @ SLAC Our involvement: MicroBooNE/ICARUS/DUNE **Our history:** long involvement in LAr reco

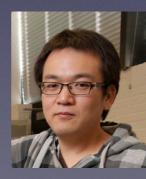
Tracy Usher: Cluster3D

- 3D point reconstruction
- 3D point clustering

Yun-Tse Tsai: • 3D shower reco



... and long advocator for 3D pattern recognition, now moving into ML



Me (Kazu): 40 bounds ago

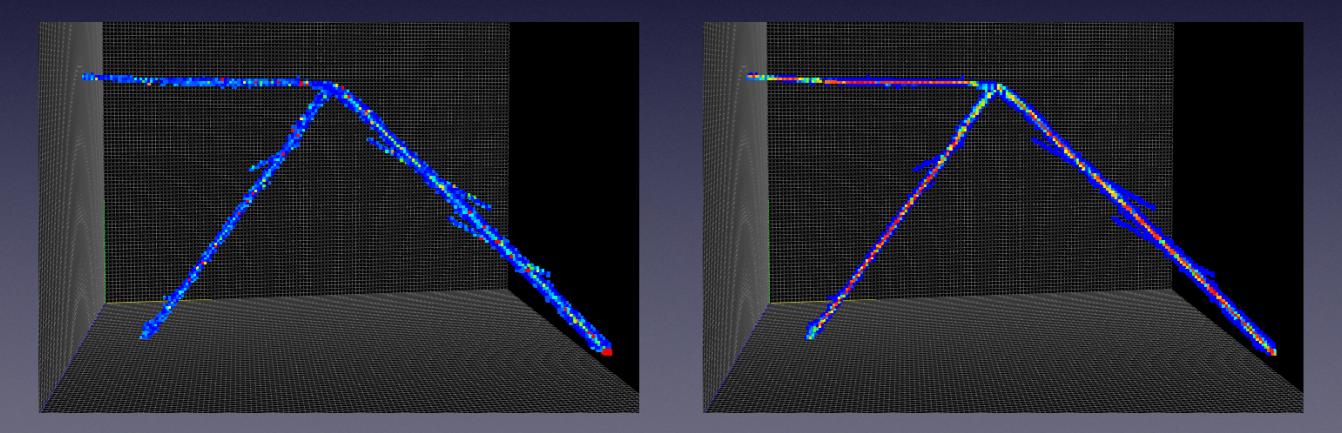
- LAr reconstruction
- Pioneered deep neural network for LAr

3D Data Reconstruction @ SLAC Our involvement: MicroBooNE/ICARUS/DUNE **Our history:** long involvement in LAr reco

Tracy Usher: Cluster3D

- 3D point reconstruction
- 3D point clustering

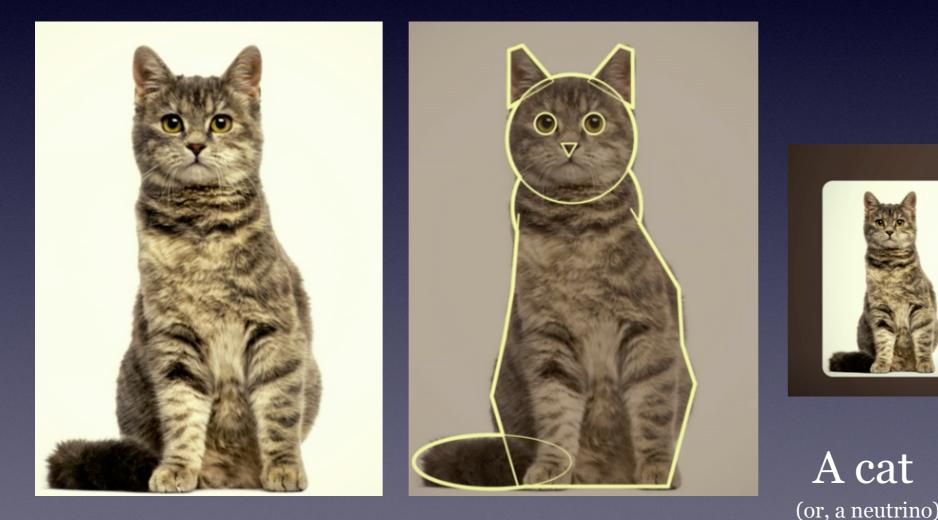
Yun-Tse Tsai:3D shower reco

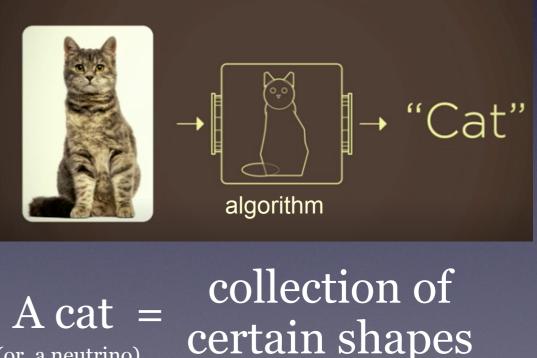


Tracy shows you can start ML above age of 60

Development Workflow for non-ML reconstruction

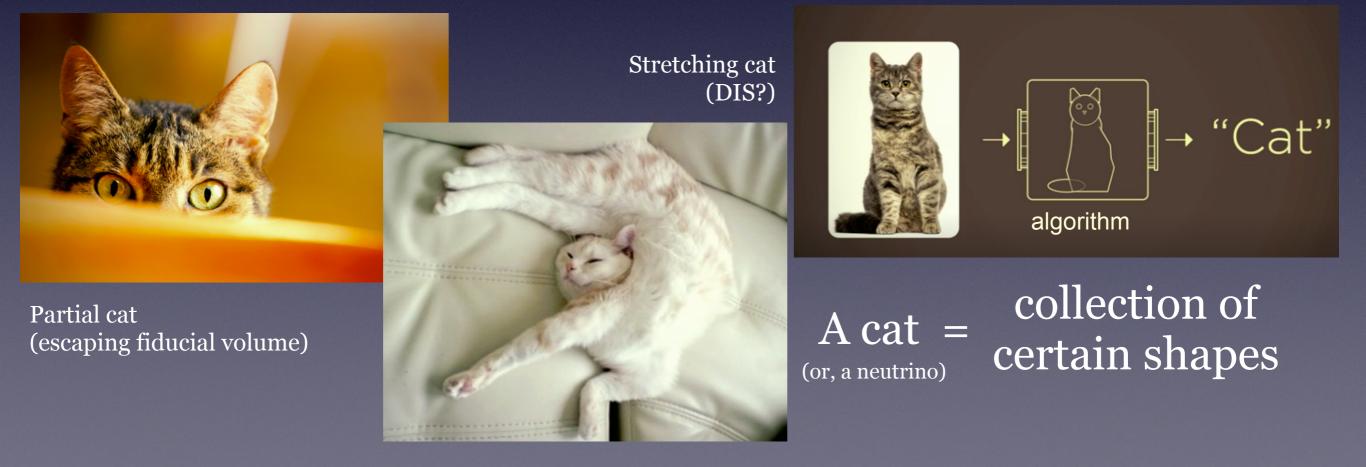
1. Write an algorithm based on physics principles





Development Workflow for non-ML reconstruction

- 1. Write an algorithm based on physics principles
- 2. Run on simulation and data samples
- 3. Observe failure cases, implement fixes/heuristics
- 4. Iterate over 2 & 3 till a satisfactory level is achieved
- 5. Chain multiple algorithms as one algorithm, repeat 2, 3, and 4.

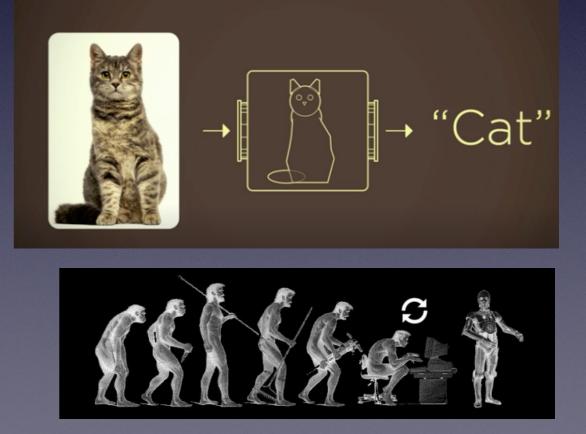


Development Workflow for non-ML reconstruction

- 1. Write an algorithm based on physics principles
- 2. Run on simulation and data samples
- 3. Observe failure cases, implement fixes/heuristics
- 4. Iterate over 2 & 3 till a satisfactory level is achieved
- 5. Chain multiple algorithms as one algorithm, repeat 2, 3, and 4.

Machine Learning

- "Learn patterns from data"
 - automation of steps 2, 3, and 4
- "Chain algorithms & optimize"
 - step 5 addressed by design
- "Deep Learning"
 - ML algorithms using deep neural networks
 - now applying to LArTPC data analysis



Machine Learning Toward Full Reconstruction Chain

30 cm

em

Demonstrations for LArTPC arXiv:1611.05531, arXiv:1808.07269 (MicroBooNE)

MicroBooNE

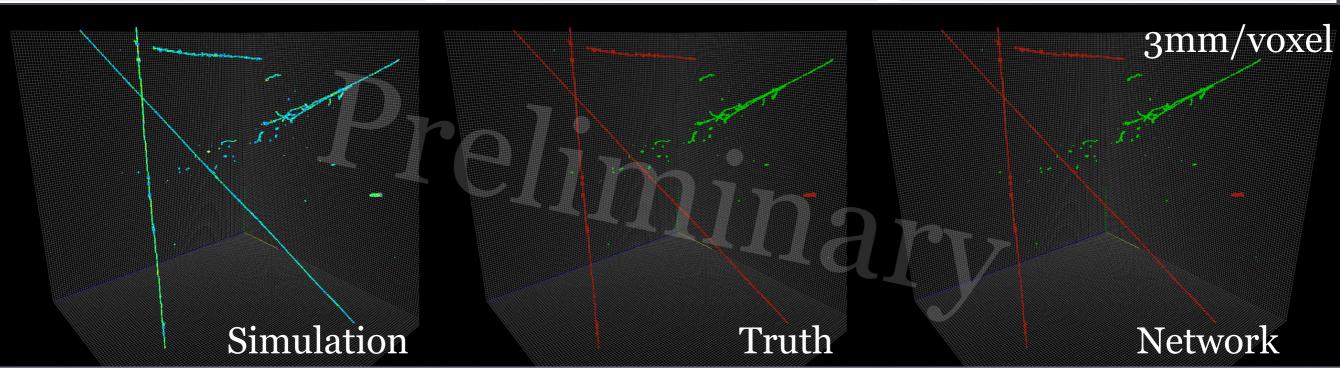
Data

30 cm

0 cm

Search or Article ID All fields arXiv.org > physics > arXiv:1808.07269 (Help | Advanced search) Physics > Instrumentation and Detectors Download: • PDF A Deep Neural Network for Pixel-Level Electromagnetic • Other formats Particle Identification in the MicroBooNE Liquid Argon (license) **Time Projection Chamber** Current browse context: MicroBooNE MicroBooNE 30 cm Data em Data

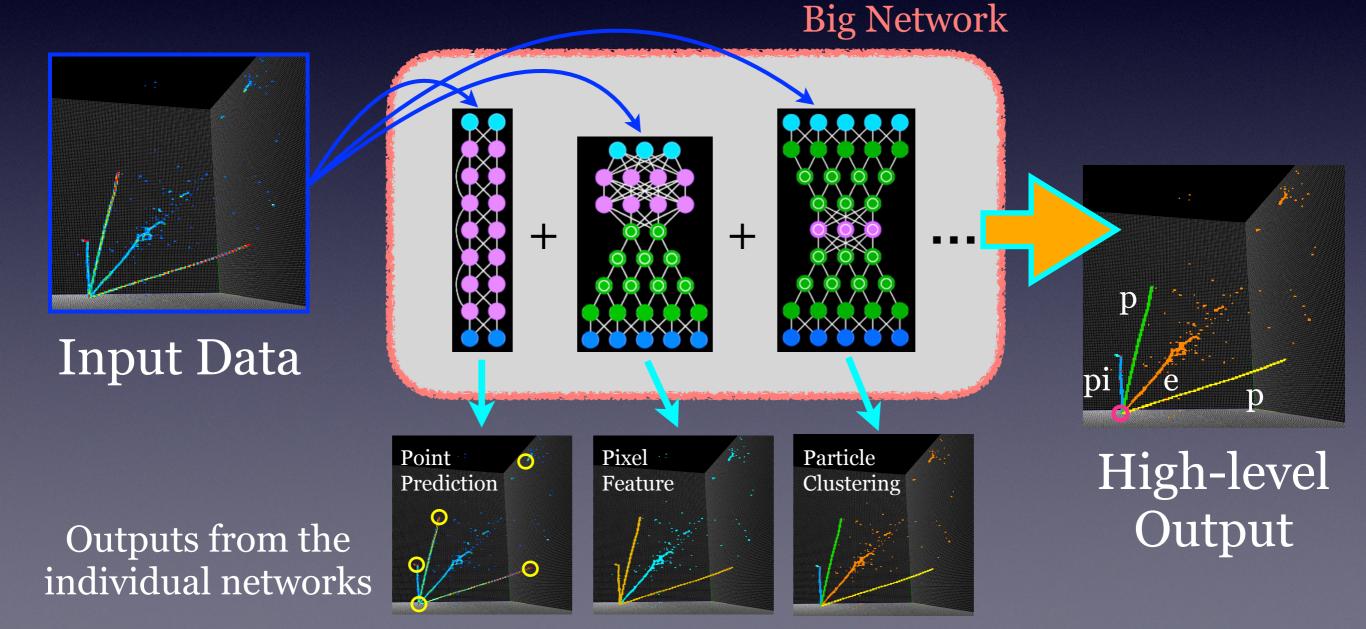
Human



ML-based Data Reconstruction

Multi-task Deep Neural Network

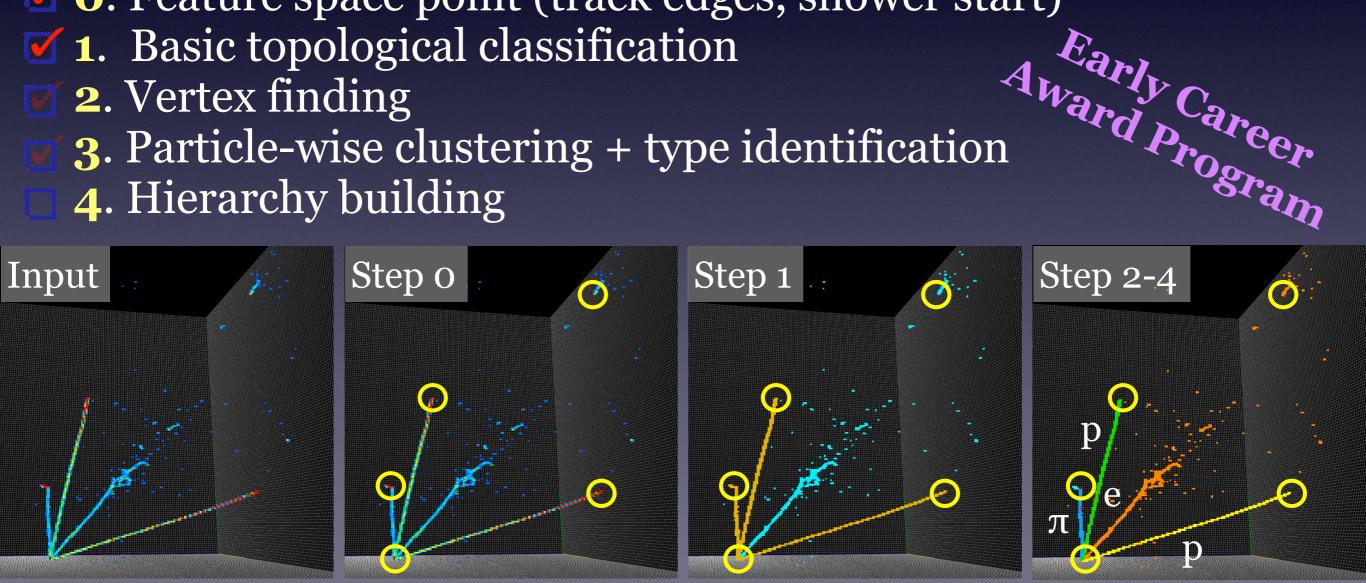
- A cluster of many task-specific networks
 - Vertex finding, clustering, particle ID, etc.
 - The big network takes all informations used by individual network for a high level physics analysis task



ML-based Data Reconstruction

Multi-task Deep Neural Network

- A cluster of many task-specific networks
 - Vertex finding, clustering, particle ID, etc.
 - The big network takes all informations used by individual network for a high level physics analysis task
- **1**. Basic topological classification
- **2**. Vertex finding
 - 3. Particle-wise clustering + type identification
 - **4**. Hierarchy building

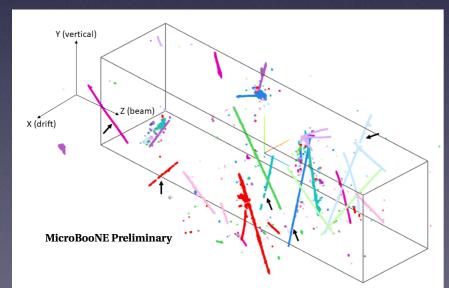


ML-based Data Reconstruction

Synergy & Collaboration w/ other efforts

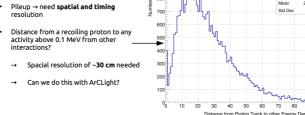
- 3D pattern recognition for wire LArTPCs
 - **BNL-SLAC** for applying to WireCell/Cluster3D
- **3D trajectory fitting, calorimetry** (post-clustering)
 - Tools for track & shower reconstruction are wanted!
- Physics analysis
 - Policy on 3D data representations (w/ LArSoft, on-going)

Bern ArCLight Analysis

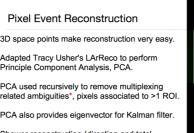


BNL (WireCell) Interaction Clustering

ArCLight – Spatial Resolution Neutron study: define light readout requirements



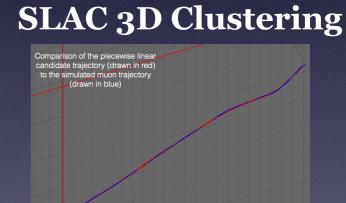
UTA/Bern PixLAr reco



Shower reconstruction (direction and total charge) is the next goal.

*Use of LARASIC4s requires analogue multiplexing. Bespoke pixel ASICs will allow for digital multiplexing

28804 26.04



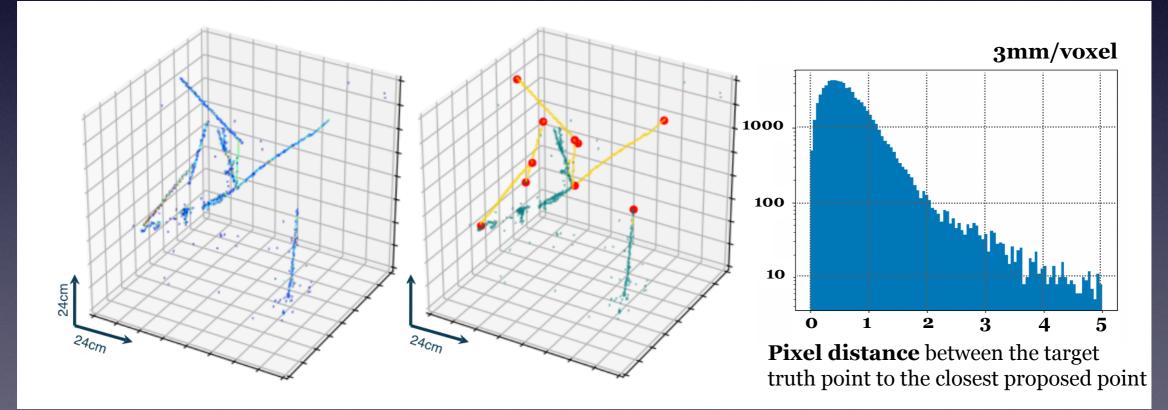
LBNL LArPix reco/calib/ana

P. Madigan: Established data processing software for calibration and reconstruction	S. Kohn: - Improved LArPix interactive 3D event disp - Developed 3D track reconstruction algorit
Stable pixel rate vs. time (~1 week)	111111111111111111111111111111111111111
SNIX N MAL AN AM	
0.5 kV/cm 1 kV/cm	
* h_rate_c89_ch8	
V. Barnard (U-Penn):	
Examined reconstructed cosmic rays	승규는 승규는 승규는 것 같아.
Cosine Theta Distribution N=7539	foni di chi di
····	Dustom
ž 2000 - L	Pursuing collaboration on native 3D LArTPC reconstruction techniques with SLAC.

Next Steps Toward Analysis

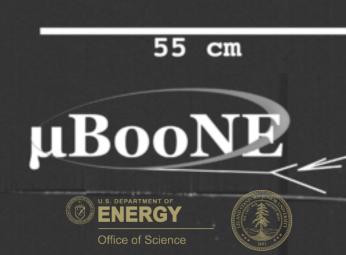
Analysis with currently existing tools

- Vertex finding + particle multiplicity counting
 - Pile-up disambiguation
- Preliminary particle clustering + energy reco
 - Range-based for tracks after fitting a trajectory
 - Calorimetry for showers after clustering



Likely ~3 physicists work for a few months. Discussion to initiate with LBNL. Minimal software overburden (can be all Python or C++ based, container for reproducibility).

Next Steps



Run 3469 Event 53223, October 21st, 2015

Next Steps in Reco Development

Scaling for big data (... still planning only)

- Discussions with Gabe Perdue (Fermilab) to leverage Summit @ ORNL (GPU-based HPC), with Eric Church (PNNL) for compute distribution framework.
- Marcel/Zelimir (ANL) offer development for KNL-based HPC, possibly ideal for sparse data, sharable with NERSC
- Possible collaboration w/ Stanford CS + NVIDIA

Next Steps in Reco Development

Scaling for big data (... still planning only)

- Discussions with Gabe Perdue (Fermilab) to leverage Summit @ ORNL (GPU-based HPC), with Eric Church (PNNL) for compute distribution framework.
- Marcel/Zelimir (ANL) offer development for KNL-based HPC, possibly ideal for sparse data, sharable with NERSC
- Possible collaboration w/ Stanford CS + NVIDIA

Sparse data vs. Computing scalability

- Traditional com. vision ML = dense matrix linear algebra
- LArTPC data is extremely sparse = super inefficient

Next Steps in Reco Development

Scaling for big data (... still planning only)

- Discussions with Gabe Perdue (Fermilab) to leverage Summit @ ORNL (GPU-based HPC), with Eric Church (PNNL) for compute distribution framework.
- Marcel/Zelimir (ANL) offer development for KNL-based HPC, possibly ideal for sparse data, sharable with NERSC
- Possible collaboration w/ Stanford CS + NVIDIA

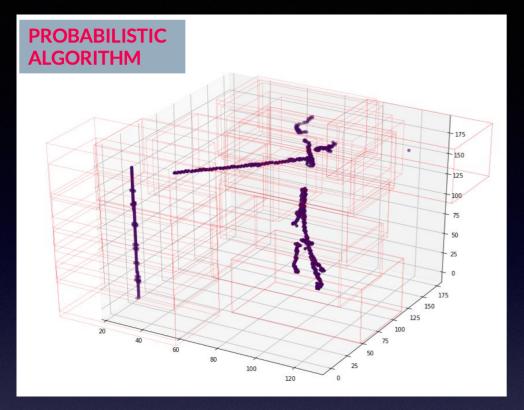
Sparse data vs. Computing scalability

- Traditional com. vision ML = dense matrix linear algebra
- LArTPC data is extremely sparse = super inefficient

Recent Progress & Plan

- More efficient method with dense matrix: ROI cropping
- Implementation of linear algebra for sparse matrix
- ML/CV techniques beyond in-grid (and sparse) data

Progress in Analyzing Sparse Data



ROI Cropping Technique

- Mitigation, not a solution
- 1/2 data reduction for 192³ sample with 64³ box crop
 - Speed up by ~x5 in algorithm training with NVIDIA V100, no performance loss
- Implemented in GPU kernel ops, now testing (expect another ~x5 speedup)

GPU hackathon @ BNL

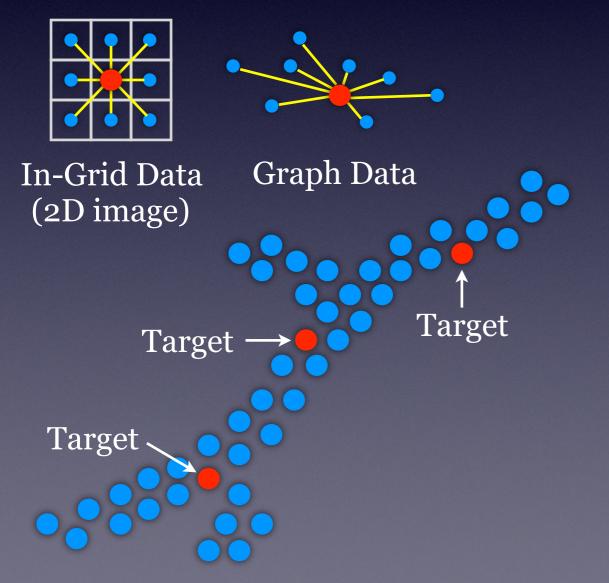
Sparse Linear Algebra

- GPU kernel ops (NVIDIA)
 - Started implementation & testing with NVIDIA experts, follow up in ~6 months
- Other venues?
 - Sparse matrix not optimal for GPUs, possibility for others such as many-core CPUs, etc? Need real expertise in distributed computing

Progress in Analyzing Sparse Data

ML in Computer Vision Beyond in-Grid Data

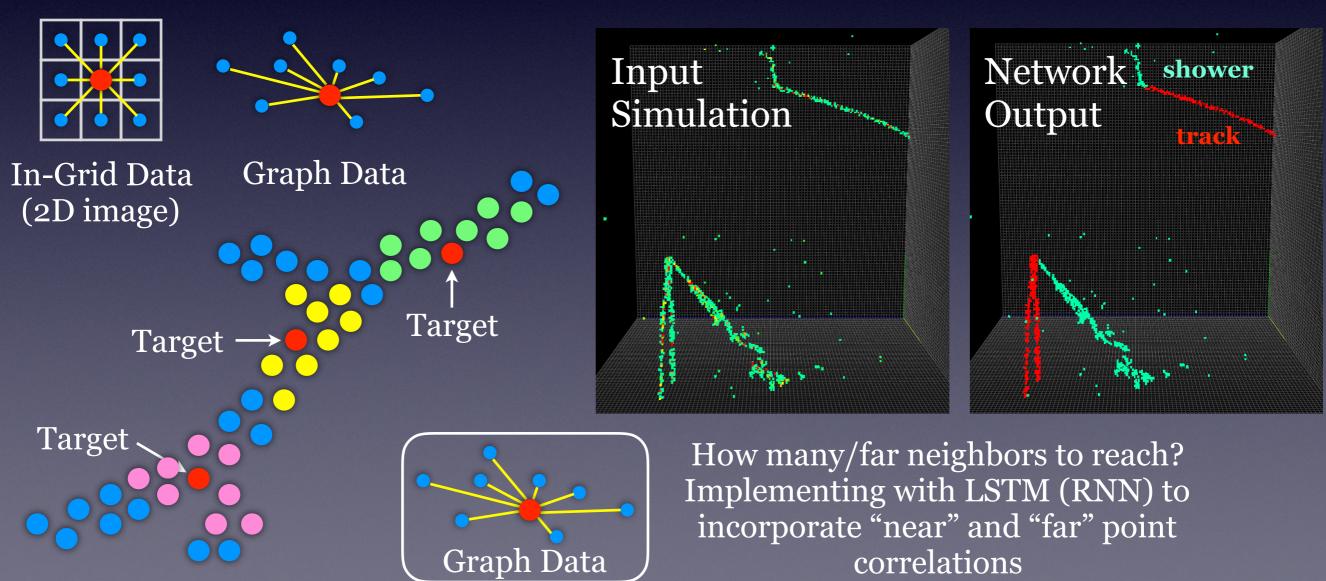
- Graph Convolutional Neural Network (GCNN)
 - Developed for social network analysis, treats data points as graph node and apply "convolution" analog operation
 - Computer vision application with **point cloud**
 - Good for clustering, point (node) detection (social media!)



Progress in Analyzing Sparse Data

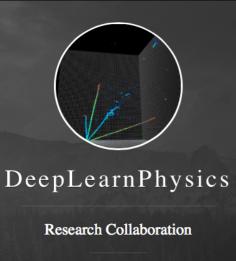
ML in Computer Vision Beyond in-Grid Data

- Graph Convolutional Neural Network (GCNN)
 - Developed for social network analysis, treats data points as graph node and apply "convolution" analog operation
 - Computer vision application with **point cloud**
 - Good for clustering, point (node) detection (social media!)



Collaboration Model

For in-depth ML/application development...



About us

∫ ¥ Twitter

Open Data

0

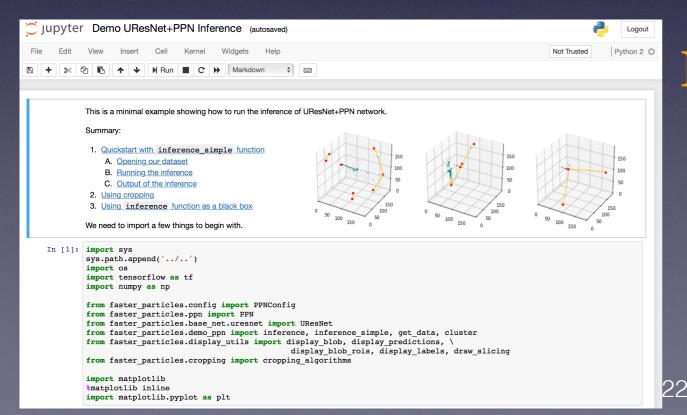
Github

DeepLearnPhysics (<u>deeplearnphysics.org</u>)

- Group of ~70 physicists (in 8 months!) across national labs and universities
- ML & ML-application development, software and data sharing for reproducible results

SLAC resource

- 2.5 postdoc + student (DOE funding ECA + HEP ML)
- ~100 GPUs (~15 dedicated, 85 opportunistic)



For analysis development

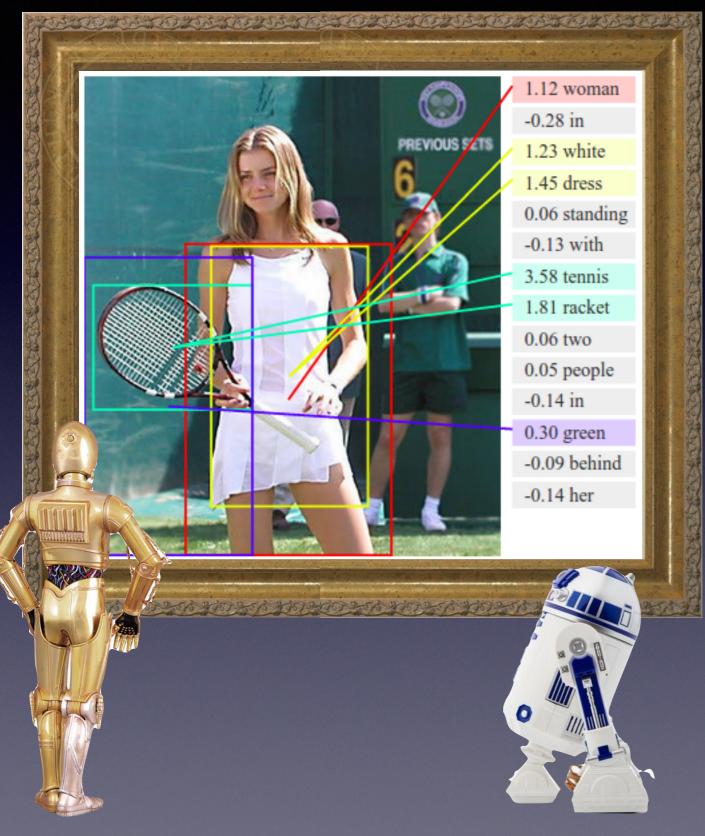
- We provide completely reproducible workflow
 - Contact me to get your hands on coding.
 - Tutorials exist & many people got started on their own. Workshops done/available.
- We need your help!

Five Messages

- Our research plan: ML-based 3D reconstruction chain for wire & pixel LArTPCs
- Current algorithms ready for some **design study**: **collaboration with LBNL** and beyond
- Have a working model for collaboration
- Will start working on a large scale data processing
- Exciting ideas to address data sparsity challenges

Back Up Slides

Image context analysis



"Pose" detection

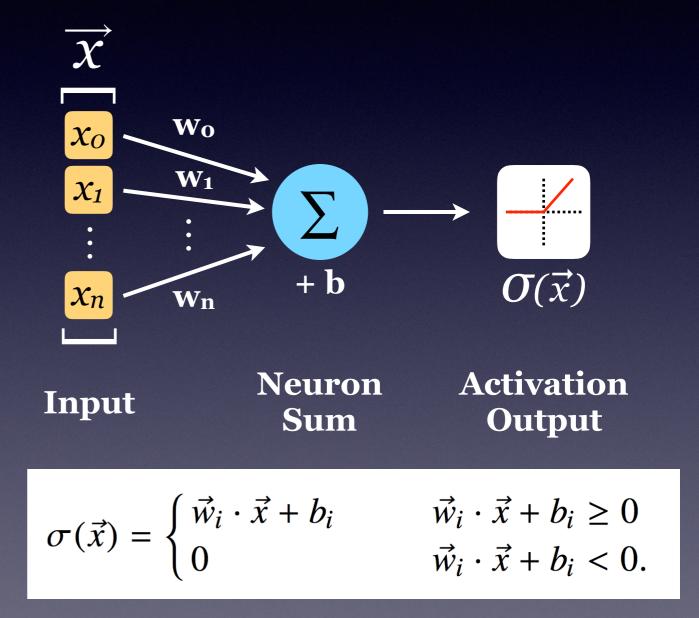
Convolutional Neural Network ~ How does it work? ~

How a Simple Perceptron Works

Background: Neural Net

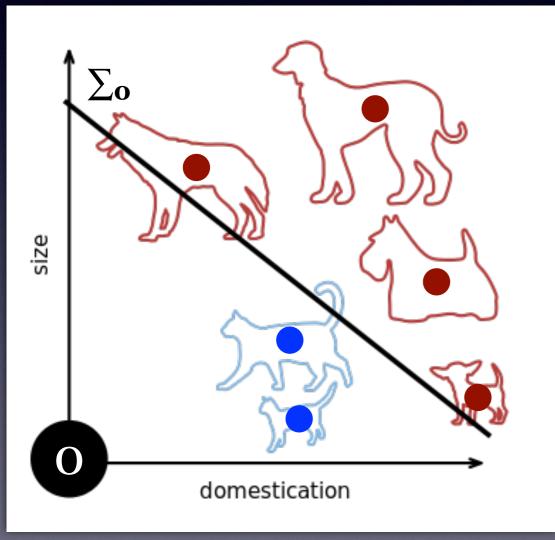
The basic unit of a neural net is the *perceptron* (loosely based on a real neuron)

Takes in a vector of inputs (x).Commonly inputs are summed with weights (w) and offset (b) then run through activation.



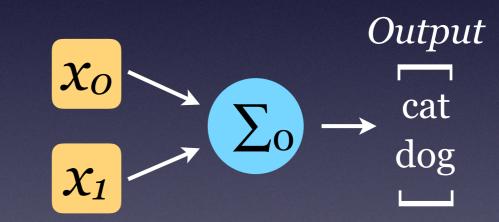
How a Simple Perceptron Works Perceptron 2D Classification

Imagine using two features to separate cats and dogs

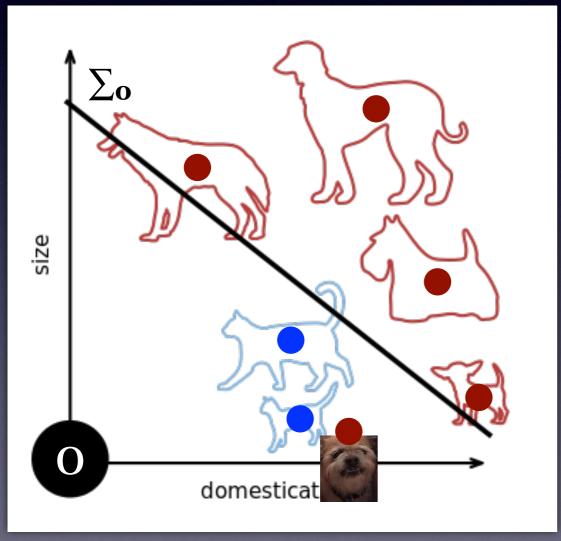


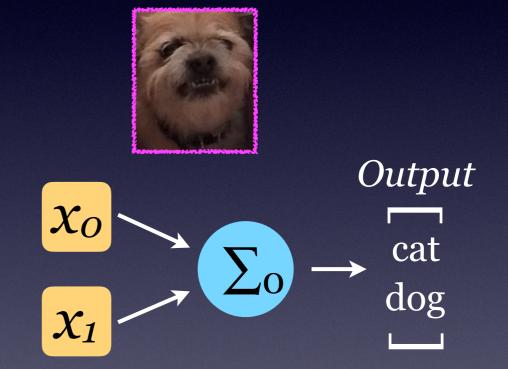
from wikipedia

$$\sigma(\vec{x}) = \begin{cases} \vec{w}_i \cdot \vec{x} + b_i & \vec{w}_i \cdot \vec{x} + b_i \ge 0\\ 0 & \vec{w}_i \cdot \vec{x} + b_i < 0. \end{cases}$$



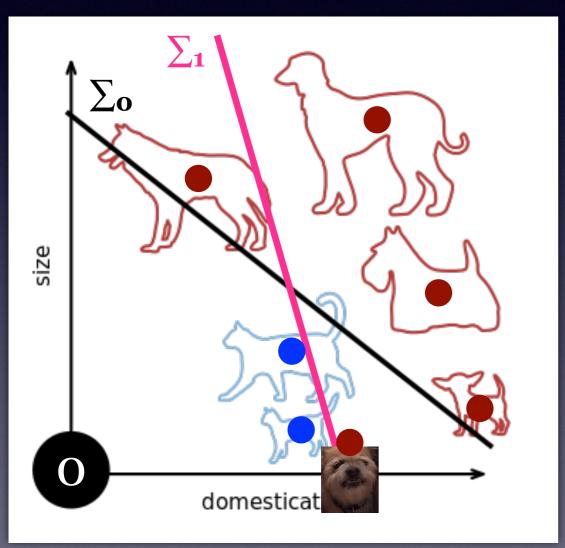
By picking a value for w and b, we define a boundary between the two sets of data How a Simple Perceptron Works Perceptron 2D Classification Maybe we need to do better: assume a new data point (small but not as well behaved)



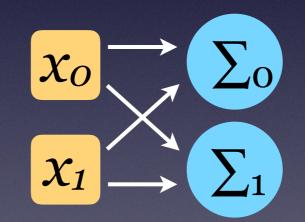


from wikipedia

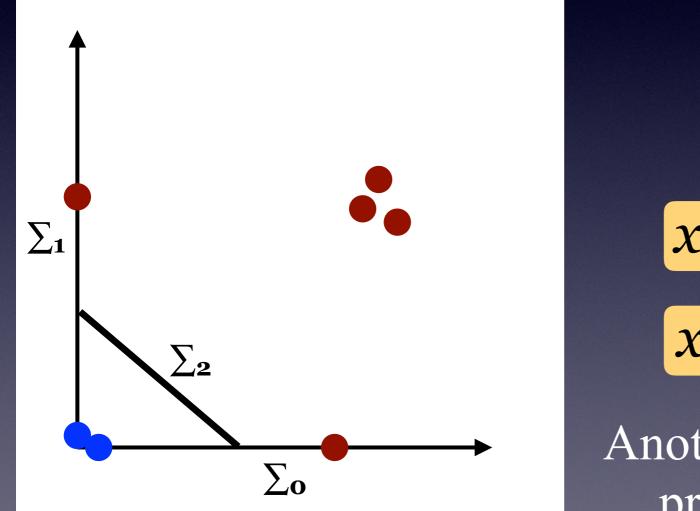
How a Simple Perceptron Works Perceptron 2D Classification Maybe we need to do better: assume a new data point (small but not as well behaved)

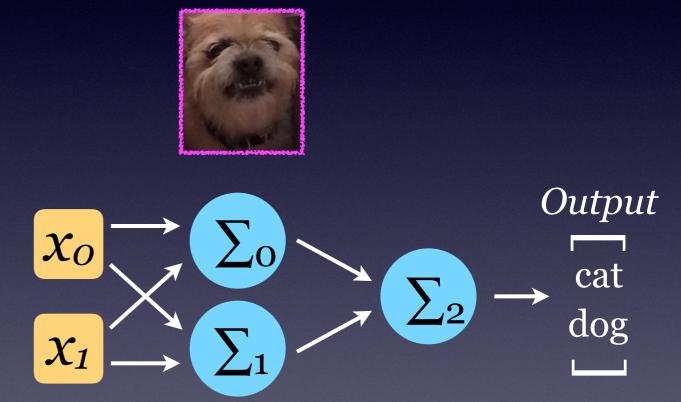


from wikipedia



We can add another perceptron to help (but does not yet solve the problem) How a Simple Perceptron Works Perceptron 2D Classification Maybe we need to do better: assume a new data point (small but not as well behaved)

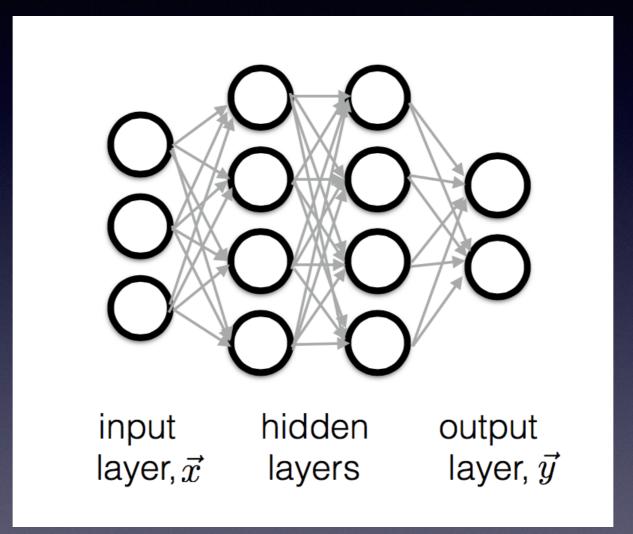




Another layer can classify based on preceding feature layer output

"Classical" Neural Net

Fully-Connected, Feed-forward, Multi-Layer Perceptrons



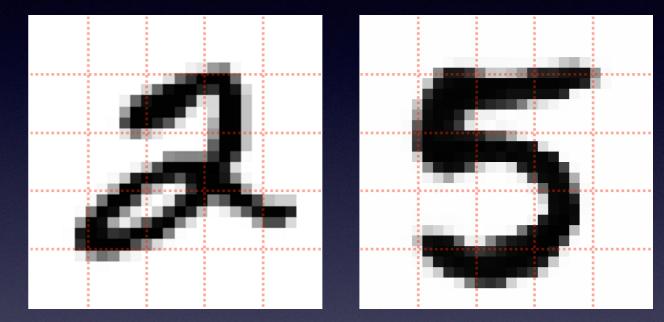
A traditional neural network consists of a stack of layers of such neurons where each neuron is *fully connected* to other neurons of the neighbor layers

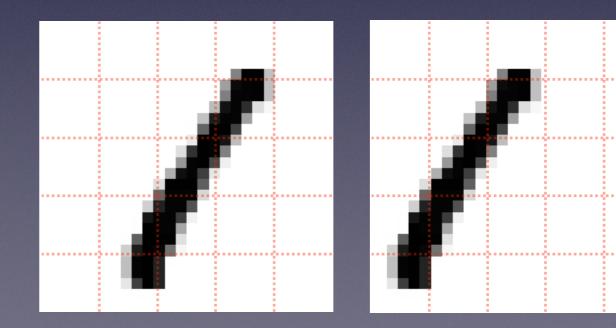
"Classical" Neural Net

... is not ideal for image classification ...

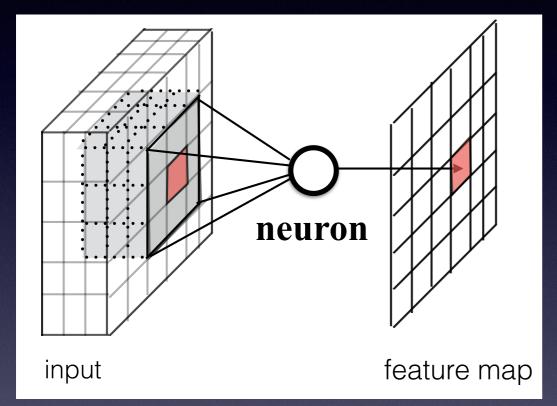
Image classification

- What is input neurons?
 - Every pixel value
- How many weights?
 - # of pixels in an image!
- Fully connected?
 - translation variant!





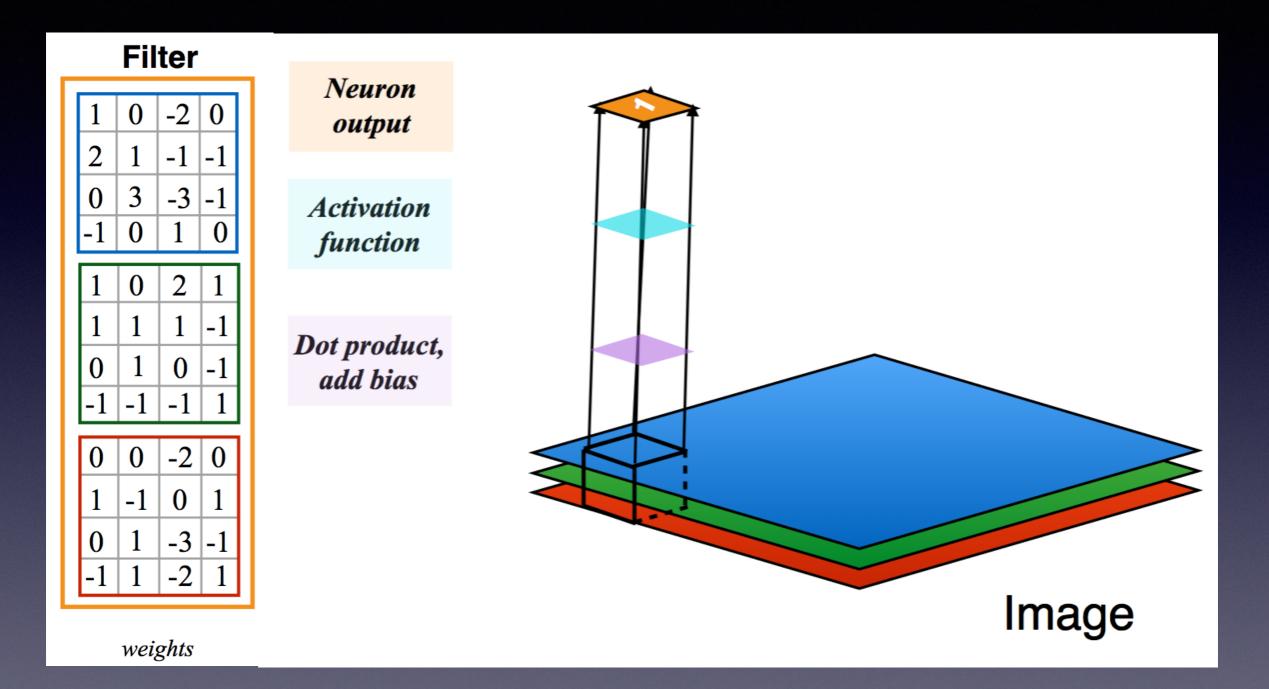
CNN introduce a *limitation* by forcing the network to look at only local, translation invariant features



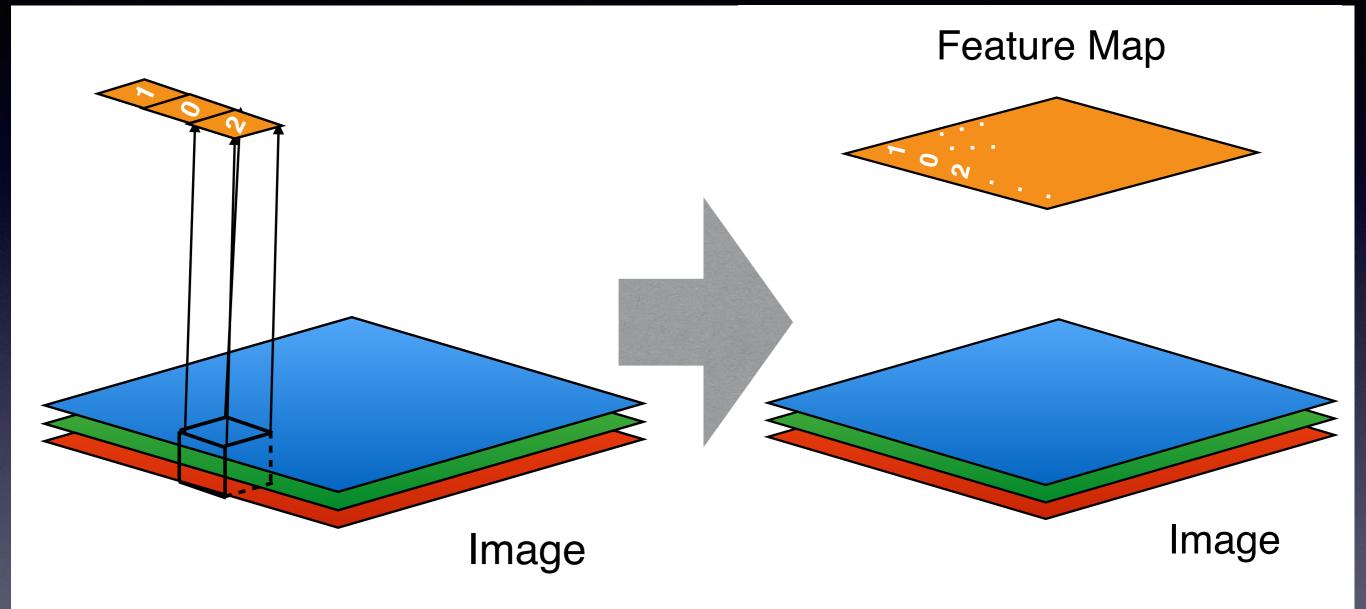
$$f_{i,j}(X) = \sigma \left(W_i \cdot X_j + b_i \right),$$

Activation of a neuron depends on the element-wise product of 3D weight tensor with 3D input data and a bias term

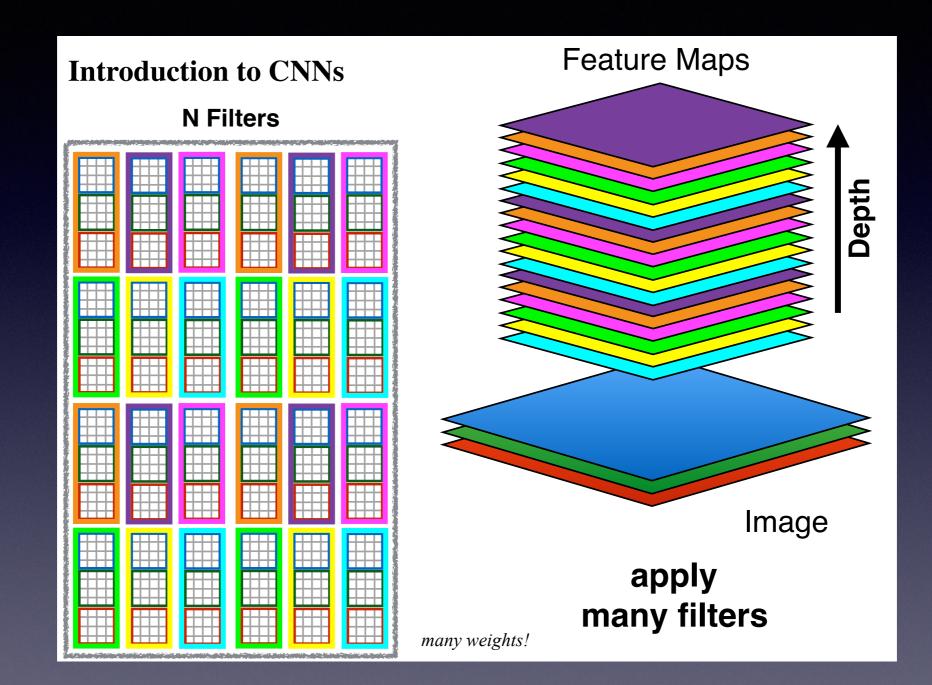
- Translate over 2D space to process the whole input
- Neuron learns translation-invariant features
 - Suited for a "*homogeneous*" detector like LArTPC
- **Output**: a "feature-enhanced" image (*feature map*)



Toy visualization of the CNN operation



Toy visualization of the CNN operation

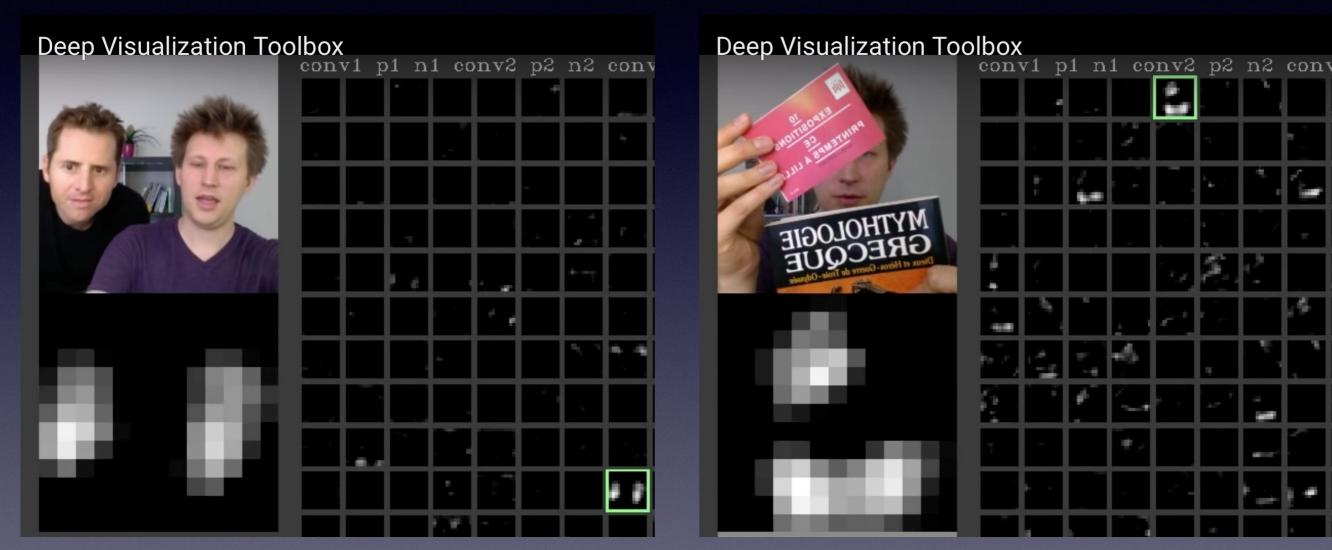


Toy visualization of the CNN operation

How Image Classification Networks Work

Feature map visualization example

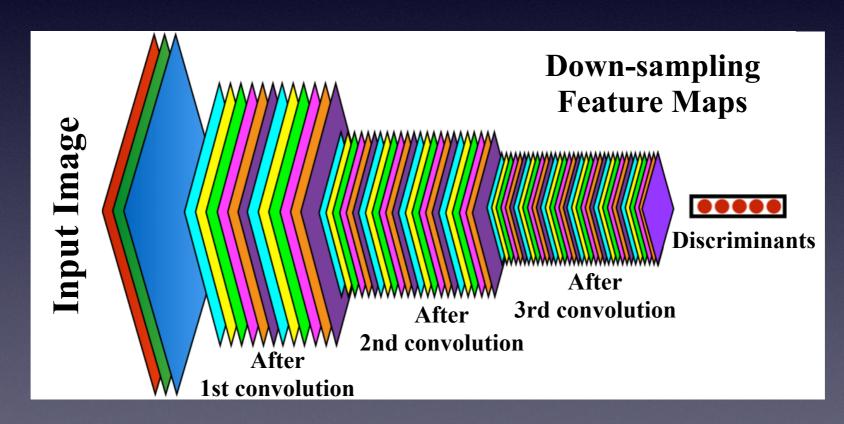
<u>https://www.youtube.com/watch?v=AgkfIQ4IGaM</u>



Neuron concerning face

Neuron loving texts (and don't care about your face)

How Image Classification Networks Work Goal: extract features to give "single label" to an image 1. Convolution operation 2. Down-sampling



Series of convolutions + down-sampling How Image Classification Networks Work Goal: extract features to give "single label" to an image 1. Convolution operation 2. Down-sampling

