

LArPix: Status and Plan

Dan Dwyer (LBNL)

Pixel LArTPC Autumn Workshop

Sep. 29, 2018

3D LArTPC

Ambiguities in projective wire readout:

DUNE Near LArTPC:

High neutrino rate exacerbates ambiguities.

Pixel Readout Development

Demonstration of pixel sensor feasibility (Bern/ArgonCube) Progress with in-beam tests (PixLAr)

 \rightarrow Low-power pixel electronics (LBNL)

Example neutrino signals from one LBNF spill

LArPix-v1 Design

True 3D readout: A dedicated front-end channel for every pixel

Approach: Amplifier with Self-triggered Digitization and Readout

Achieve low power: avoid digitization and readout of mostly quiescent data. Sep. 29, 2018 LArPix Development

LArPix v1: Design for Testability

Incomplete list of testing features

Front end:

- contains programmable test pulse generator
- output of any channel can be routed to analog monitor bus
- can be bypassed so ADC performance can be evaluated independently
- has multiple reset modes: self-reset (post-digitization), periodic reset (adjustable, 200 ns to 3 s)

ADC:

- can execute programmable number of ADC conversions before reset issued
- has programmable ability to allow more time for front end to settle

Digital core:

- allows any number of channels to be disabled
- allows any number of channels to be externally triggered
- operates on different power supply from analog front end
 - power reduction can be explored using low-voltage digital
- has multiple reset methods: soft reset (through configuration interface), hard reset (pin toggle)
- has multiple FIFO test modes:
 - configuration interface sends out known patterns, exercises FIFO memory
 - FIFO is put into overflow condition to check impact on system performance
- has FIFO monitoring: half-full and overflow flags, explicit mode for tracking FIFO depth

Close Dialog with Physics

Developed a set of tools to assess TPC readout design

 \rightarrow Thanks to B. Viren for intro to BEM tools

Signals have been input to IC modeling program (Spice, Cadence) to assess IC design, performance.

LArPix-v1 Progress

LArPix-v1 ASIC:

- Dec. 2016: Design began
- June 2017: Submitted for fabrication
- Oct. 2017: First chips, test boards @ LBNL
- Dec. 2017: Bench tests successfully completed
- Jan. 2018: Assembled sensor, integrated LArTPC

Progress since last collaboration meeting:

- Feb. 2018: First tracks from true 3D LArTPC @ LBNL
- Mar. 2018: Developed integrated control system
- Apr. 2018: Assembled scalable 512-channel system, operated in 60-cm-drift TPC @ Bern
- May 2018: Operated 832-channel system @ LBNL

Process: 180nm bulk CMOS

Design and testing team @ LBNL:

D. Dwyer, C. Grace, M. Garcia-Sciveres,A. Krieger, D. Gnani, T. Stezelberger,S. Kohn, P. Madigan, H. Steiner

Sep. 29, 2018

Initial Bench-testing Results

Demonstrated low-noise low-power cryogenic amplification, digitization, and readout:

~1.5 mV (~375 e-) at room temp ~1.1 mV (~275 e-) in LN² bath

Low Power:

Average power for 128-channel readout:

- Analog: 24 μ W/channel
- Digital: 38 μW/channel
- Total: 62 μW/channel

Performance exceeds design targets:

< 500 e- ENC < 100 µW/channel Sep. 29, 2018

Low Noise:

P. Madigan, S. Kohn: drove testing effort LArPix Development 7

LArPix-v1: Readout Assembly

Complete readout assembly

28-chip LArPix data board sandwiched to pixel board

Pixel Board:

Standard printed circuit board Fits Bern Pixel Demonstrator TPC 10 different pixel geometries

LArTPC Operation

Demonstration of cosmic ray detection at increasing scales

Feb 2018:

128-pixel system @ LBNL 10 cm drift, 200 V/cm

Apr 2018:

512-pixel system @ Bern 60 cm drift, 1 kV/cm

May 2018:

832-pixel system @ LBNL

Sep. 29, 2018

1 cm

LArPix @ Bern

Even more complex topologies

LArPix Development

LArPix Raw Data

Brief description of raw LArPix data

54-bit hit record: Pixel ID, ADC value, timestamp, status bits Each colored point shows one self-triggered hit

- Hit x, y position from pixel location (3 mm precision)
- Position along drift given by timestamp (200 ns precision)
- Color shows hit amplitude (2 mV precision)

- ADC value converted to mV based on initial calibration

No filtering, manipulation applied to raw data.

→ Noise is very low: >20:1 SNR for MIPs

Comment on LArPix data rates:

Pixel self-triggering substantially reduces data volume:

<u>LArPix operation @ Bern:</u> 60cm drift at surface

512 pixels, ~0.3 Hz/pixel \rightarrow ~3 kB/s total rate

DUNE Near Detector:

50cm drift underground 8M pixels, ~0.01 Hz / pixel → ~2 MB/s total rate

LArPix Triggering

Self-triggering with pulsed reset \neq Zero suppression

LArPix has no resistive feedback

ightarrow Charge stays on pixel until you do something with it

Your choices:

- Self-trigger reset: digitize and drain charge after threshold crossed
- External-trigger reset: digitize and drain sub-threshold charge based on external signal
- Cross-trigger reset: digitize and drain sub-threshold charge based on self-trigger of another pixel
- Periodic reset: periodically discard sub-threshold charge without digitization

Sep. 29, 2018

Recent Progress: 832-channels

Completed full instrumentation of first-generation readout system

May 21:

Began readout upgrade: 512 → 832 channels May 25:

Completed testing in LArTPC @ LBNL

Initial results from LArPix testing program: arXiv:1808.02969, Accepted by JINST

Recent Progress: Control System

Improved LArPix DAQ electronics for large-scale detectors

Current Control Electronics

Developed at LBNL Controls O(10k) pixels Not easily scalable to larger systems Very effective during initial R&D

Improved Control Electronics

Developed at Bern *Thanks, Igor!* Individual module: O(100k) pixels Highly Scalable: Multi-module control via ZeroMQ over GB ethernet Very affordable: O(\$100) per unit

Recent Progress: Analysis

P. Madigan:

Established data processing software for calibration and reconstruction

V. Barnard (U-Penn):

S. Kohn:

- Improved LArPix interactive 3D event display
- Developed 3D track reconstruction algorithm

Pursuing collaboration on native 3D LArTPC reconstruction techniques with SLAC.

Recent Progress: LAr System

Designed and commissioned new High-purity LAr system at LBNL

Special thanks to P. Madigan for successful system assembly and commissioning!

Description:

- Single-pass purification
- Easier operation than previous system
- Dedicated to LArPix testing
- Cycle time (fill, test, purge) should be ~24 hrs.

Aug. 13:

First LAr fill and successful safety evaluation

Past week:

Completed activation of new LAr purifier.

Next Steps:

- Assess system noise
- Demonstrate e⁻ drift
- Acquire cosmic ray data

Next Steps: Demonstrators

Roadmap of potential demonstrations at increasing scales:

LArIAT LArTPC

Readout area: 0.36 m² # pixels: 22.5k # ASICs: 350 Target: Mid 2019

Provide known particle beam for detailed assessment of PID and energy performance. ArgonCube 2x2 Demonstrator

Readout area: 6.4 m² # pixels: 400k # ASICs: 6.3k Target: Late 2019

First module currently under construction. Demonstrator for DUNE Near Detector ProtoDUNE (Run 2)?

Readout area: 13.8 m² / APA # pixels: 860k / APA # ASICs: 13.5k / APA Target: 2020-2021

Side-by-side comparison with DUNE wire readout technologies.

Also pursuing LArPix readout for High-pressure Ar gas TPC Near Detector Module with FNAL, others

Sep. 29, 2018

Next Steps: Scalability

Design modular pixel tile for instrumenting large area sensors

- Standard size (e.g. 25cm x 25cm, or 32cm x 32cm) for easy industrial production
- One tile = one LArPix daisy chain
- ASIC-only: no other active components

Tile anode

1m

Extend pixels edge-to-edge Increase size 25cm f g $(100k) channels per m^2$

Reduce to single PCB

Anode Frame? - Support tiles from backside - Support cabling - Handle thermal contraction

- Maintain required tolerances

Next Steps: LArPix-v2

Exploring LArPix-v2 for scalable assembly and improved physics performance:

Increase dynamic range for charge signal Double number of channels per chip (32→64) Make daisy chain I/O robust to chip failure. Substantially reduce external circuitry Improve hit timestamp Increase channel threshold range Improve front-end pulser Tailor bandwidth of discriminator *Plus a number of other changes*

Test LArPix in packaged form:

Many advantages for assembly and testing

Layout seems manageable, but must demonstrate no adverse issues after packaging.

Currently crowded PCB layout

 \rightarrow Integrate external circuits into ASIC

Goal:

Dec. 2018: Complete v2 design *Apr. 2019:* Complete v2 production

Next Steps: System Design

Must establish a complete design for a detector-scale pixel readout system

Next Steps: Cost Model

Establishing production cost model for ArgonCube 2x2 and DUNE ND

Model details:

- Based on actual vendor quotes, or similar prior experience
- 4 mm pixel pitch
- 5m x 4m x 3m Near Detector, with 50 cm drift

Model includes:

- Cost to fully produce pixel tiles
- 10% spares
- 20% overhead

Not included:

- System design effort
- QA/QC, Testing effort
- Related systems (<< \$5000/m²): anode frame, cabling, feedthroughs, etc.
- Contingency

Sep. 29, 2018

	ArgonCube 2x2	Near Det.
Readout Area [m2]	6.4	120
# Pixels (4mm pitch)	4.02E+05	7.50E+06
# ASICs	6,282	117,188
# Tiles (32x32cm)	63	1,172
	\$400 7 00	\$000 007
Cost, Water Production	\$100,780	\$280,807
Cost, Die Preparation	\$1,571	\$29,297
Cost, Packaging	\$6,910	\$128,907
Cost, PCB Production	\$3,735	\$52,806
Cost, PCB Components	\$2,073	\$38,672
Cost, PCB Assembly	\$1,176	\$15,690
Total Cost	\$116,245	\$546,178
Total Cost (+20% Ovhd)	\$139,494	\$655,414
Cost, per square meter	\$21,796	\$5,462

General conclusion: production costs seem very reasonable

~\$3.8k @ 5mm ~\$9.1k @ 3mm

Next Steps: Partners

Substantial effort required to develop detector-scale system

LArPix ASICs: Integrated circuits for charge signal amplification, digitization, and readout **Pixel Anode Boards:** Circuit boards which host charge-sensitive pads and readout ASICs **Internal Cabling:** Transmits power and I/O from feedthrough to anode Anode Frame: Provides structural support for anode PCBs and cabling Readout Feedthroughs: Transmits power and I/O passage through cryostat **Isolation Electronics:** Provides isolation and filtering of power and I/O at feedthrough **External Cabling:** Transmits power and I/O from DAQ electronics to Isolation electronics **Power Supplies:** Provide power needed to drive the electronics **DAQ Electronics:** Generates clock and provides I/O bridge from ASICs to DAQ computer **DAQ Computer:** Issues input commands, receives output data packets, records data **DAQ Software:** Formats input commands, interprets output data packets. **Calibration:** Dedicated techniques for pixel readout calibration Pixel LArTPC Analysis: Studies, simulation, algorithms needed to guide development and prepare for large-scale pixelated data analysis.

Many open roles for partners for design, production, and testing of all system aspects! Please attend the Pixel LArTPC workshop (Sep. 29, 2018 @ FNAL): <u>https://indico.fnal.gov/event/18172</u>

LArPix Summary

3D pixelated charge readout for LArTPCs:

LArPix demonstrates feasibility of low-noise low-power 3D readout Unique front-end channel for every pixel Key purpose: overcome neutrino pileup in DUNE Near Detector LArTPC

Recent Progress:

Operation of complete 832-channel LArPix readout system *arXiv:1808.02969* Development of new control electronics Progress in LArPix analysis, reconstruction Commissioning of new high-purity LAr system

Next Steps:

Aiming for technical demonstrations at increasing scales → LArIAT, ArgonCube 2x2 Demonstrator, ProtoDUNE (run 2) Many developments to ease large-scale production

- Modular pixel tile design
- Version 2 of LArPix ASIC
- Production cost model
- Partnerships for development of complete readout system

Learn more at Pixel LArTPC Workshop (Sep. 29 @ FNAL): <u>https://indico.fnal.gov/event/18172</u>

Sep. 29, 2018

