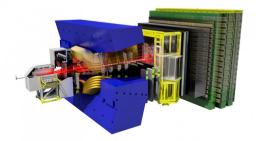


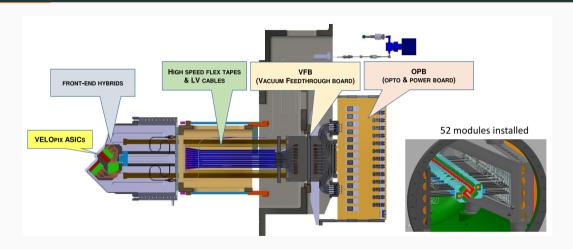
VELO Upgrade Data Acquisition System

Karol Hennessy

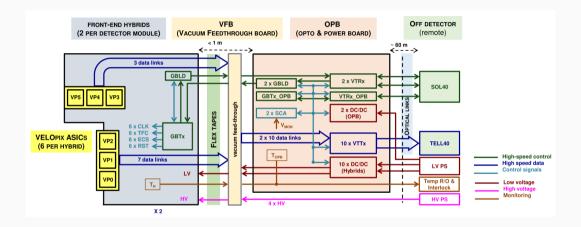

October 2, 2018

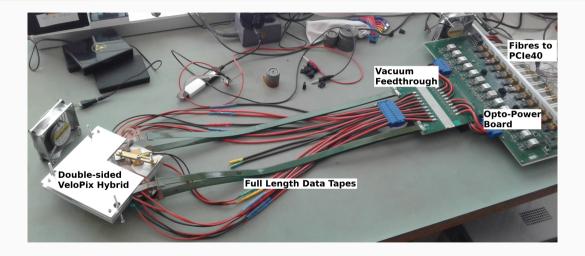

University of Liverpool

VELO Upgrade


- Vertex Detector for the LHCb upgrade
- 52 silicon pixel modules around the LHC beam interaction region
 - · Very high radiation environment
 - 50fb⁻1 integrated luminosity
 - maximum fluence approx. 8×10^{15} MeV n_{ea}/cm^2

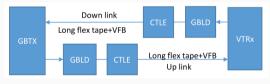
- In vacuum
 - Requires active cooling microchannel CO₂
- LHCb Upgrade has triggerless readout - full detector readout @ 40 MHz




VELO Upgrade CAD

VELO Upgrade Electronics

VELO Upgrade Electronics

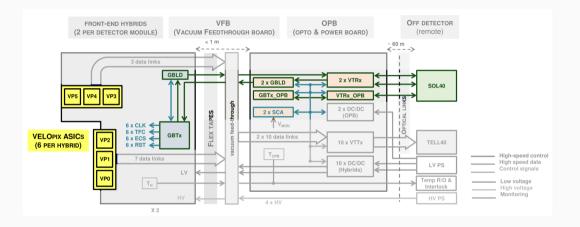

VELO Upgrade in Numbers

Feature	
Sensors	Pixels
# of modules	52
Detector Active area	0.12 m^2
	\sim 41 M pixels
Technology	electron collecting
	200 $ m \mu m$ thick
Max fluence	$8 \times 10^{15}~\mathrm{MeVn_{eq}/cm^{-2}}$
HV tolerance	1000 V
ASIC Readout rate	40 MHz
Total data rate	2+ Tb/s
Total Power consumption	2.2-2.3 kW

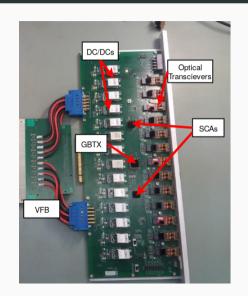
Pathways

ECS - Experiment Control System

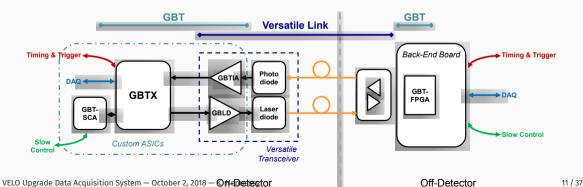
- Bi-directional with GBTx ASIC
- 4.8 Gb/s
- Use of GBLD as electrical line driver (emphasis and amplification functionality)


DAQ - Data Acquisition

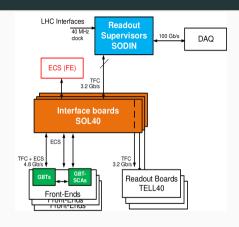
- Uni-directional (from VeloPix to back-end)
- 5.12 Gb/s
- VeloPix has some internal emphasis


Similar electrical transmission lines for ECS and DAQ - expect similar performance.

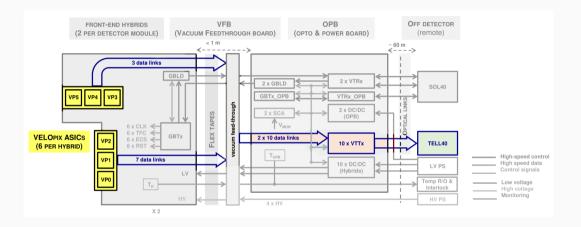
ECS Path


Opto-Power Board

- · Situated on VELO tank exterior
 - Vacuum Feedthrough Board interfaces electronics inside VELO tank
 - Fibres to counting room at surface (≈ 300 m)
- Interface for data, control, monitoring signals and powering for VELO modules
 - DC/DCs for power
 - · Voltage monitoring
 - Optical transceivers for driving to/from backend
- Control via GBT chipset

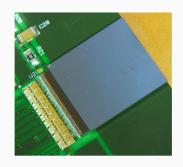

GBT - ECS interface

- The GBTX chip is a radiation tolerant chip for LHC upgrade experiments
- GBT Protocol can utilise three logical data paths
 - Trigger and Timing Control (TTC)
 - · Slow Control (SC) via companion SCA chip
 - · Data Acquisition (DAQ) (NOT used for VELO)
- · All three logical paths can be encapsulated on a single physical interface



Timing and Fast Control (TFC)

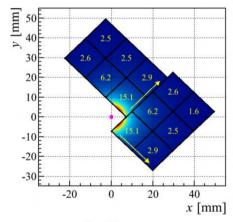
- Single Readout Supervisor provides a clock and timing commands to front-end and back-end electronics
 - BXID Reset, FE Reset, BE Reset, Sync, ...
- · Interfaces with LHC
- TFC commands are fixed latency
- Data are NOT fixed latency
- For VELO, TFC synchronisation commands form "special" GWT packets and sent immediately from front-end
 - (standard data packets are sent out-of-time)
- 10G PON network with optional feedback



DAQ Path

VeloPix ASIC

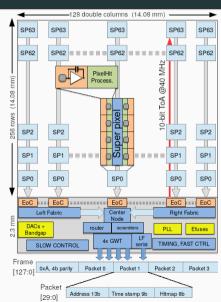
- Front-end ASIC driving the design of the VELO data acquisition system
- \cdot Operates at LHC clock rate \sim 40MHz
- Designed for high radiation tolerance and low power consumption
- Custom output serialiser Gigabit Wireline Transmitter (GWT)
- Slow control via SLVS protocol
- 12 VeloPix chips per module
- · 20 readout links (more links for hotter chips)



VeloPix ASIC

- Readout is data driven SuperPixels are only read out when they have "hits above threshold" (a.k.a. zero-suppression)
- · Binary readout @ 40 MHz
- Based on the Timepix3 ASIC
- VeloPix is optimised for high speed readout

Peak hit rate	900 Mhits/s/ASIC
Max data rate	20.48 Gb/s
Total VELO	2.85 Tb/s


• Power consumption < 1.5 $W \cdot cm^{-2}$

Data rate [Gbit/s] for hottest module.

VeloPix Data readout

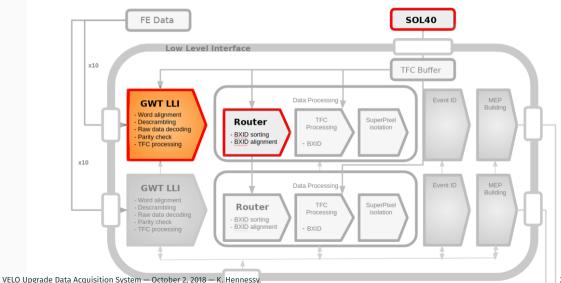
- Pixel data is aggregated into groups of 2×4 called SuperPixels
 - · 30% reduction in data size
- Data is sent out-of-time ⇒ timestamp stored in SuperPixel data packet
- Custom serializer Gigabit Wireline Transmitter (GWT)
 - · Low power 60 mW
 - 5.12 Gb/s line rate
- GWT protocol
 - · scrambled data
 - parity check, no error recovery
 - $\cdot \Rightarrow$ minimise bit error rate

Backend DAQ and Slow Control - PCIe40

- Single control and readout board for the entire experiment
- · Can be used for TFC, SC, or DAQ or all
- Common hardware, shared firmware components
- · PCle Gen3 x16
- Intel Arria10 FPGA (10AX115S4F45E3SG)
 - High power consumption up to 80W FPGA, 157W card
- up to 4 PCIe40 per chassis (ASUS ESC4000-G3, 2x Xeon 3 GHz, 8x 8 GB DDR4)

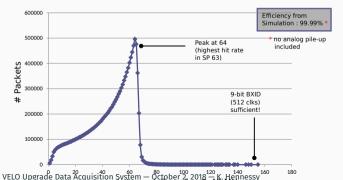
- 48 bi-directional links (or 96 uni-directional) @ ~5 Gb/s
- Output bandwidth 100 Gb/s (measured).

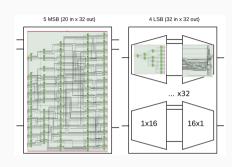
MiniDAQ - All in one solution


- MiniDAQ = PCle40 + server
- The MiniDAQ platform allows for controls, DAQ, and software all to run in a standalone system
- The server is provided with the PCIe40 installed, necessary programming cables and OM3 fibres
- WinCC JCOP software comes pre-installed (a licence is needed)
- All necessary drivers and support software is installed
- With one server, one can control the front-end hardware and at the same time read out its data.

VELO Firmware

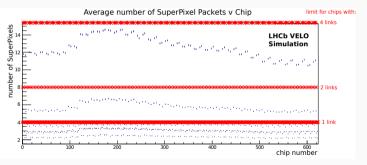
VELO Firmware




VELO Firmware

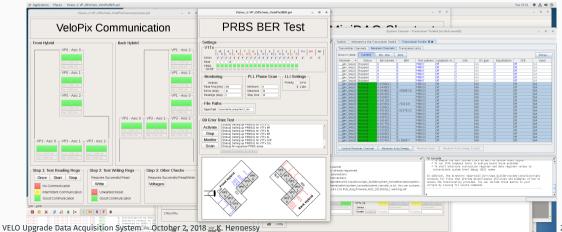
- VELO SOL40
 - · GBTx is connected directly to the VeloPix rather than through the SCA
 - Requires custom SLVS component in the SOL40 firmware
- GWT LLI
 - GWT word alignment
 - Descrambling
 - · Parity check
 - TFC Synchronisation functionality
 - SuperPixel packet extraction
- Router
 - Primary function of the Velo firmware
 - · Re-ordering the data in time
- · Optional components (if FPGA resources allow)
 - SuperPixel Isolation flagging (proto-clustering)
 - · Phi Ordering

BXID Router

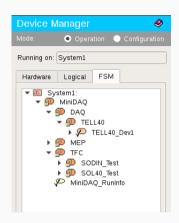

- Time-ordering SuperPixel data
 - 9-bit router sorts data 1 bit at a time
 - Extensive simulation required both to maximise speed (>160 MHz) and minimise FPGA resource usage
 - Latency limit < 512 clock cycles

VeloPix Simulation/Emulation

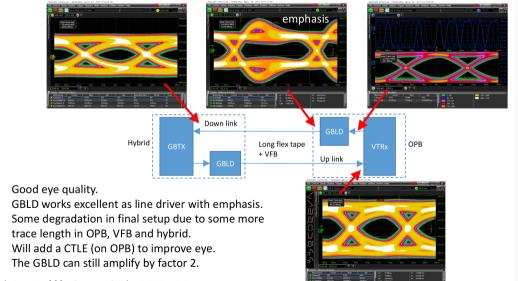
- Emulating VeloPix using LHCb Monte-Carlo data
 - · Software emulation for simulation
 - Hardware emulation using FPGA (Xilinx VC709)



Software and Testing

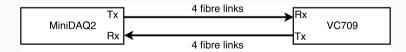

ECS Software

- · Software for configuring the electronics and readout
- Joint COntrols Project @ CERN (JCOP)

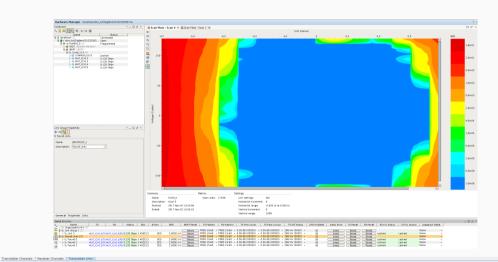


ECS Software

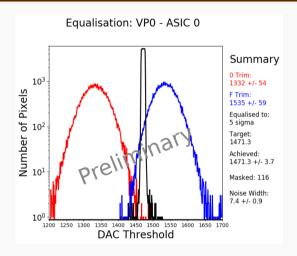
- Control system modelled with finite state machine tree
 - commands propagate down; status propagates up
- Integrates with SOL40, TELL40, SODIN
- Can integrate with COTS hardware (CAEN, ISEG, Wiener...)
- Rapid development
- · Oracle database backed
- · Archiving, trending, alarm functionality...

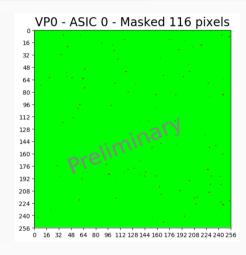


Link Performance



MiniDAQ2 Transceiver testing


- Goals
 - · Mitigate the kind of transceiver problems seen with MD1
 - Generate working transceiver block for GWT with 240 MHz reference (change from MD1)
- Use PRBS signals between VC709 Xilinx board and MD2
- · Use independent clocks and recover signals in both directions



MiniDAQ2 Transceiver testing

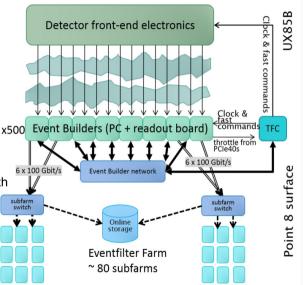
VELO Module Testing

Concluding remarks

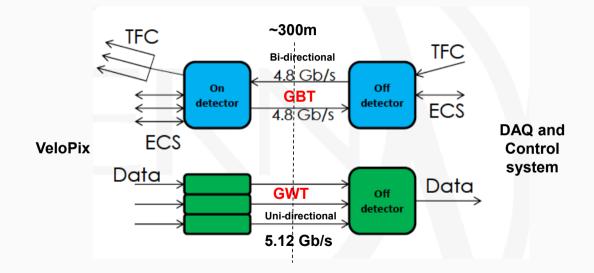
- LHCb Upgrade using GBT and PCIe40 platforms
 - · Uniformity of hardware
 - Large knowledge base
- PCIe40/MiniDAQ platform allows common hardware but custom "user" firmware
- Exploited for VeloPix with many customisations whilst profiting from common LHCb developments
- Future work FPGA vs. CPU
 - LHCb @ 40 MHz puts huge demand on computing
 - · Must endeavour to exploit FPGA where possible

Backup

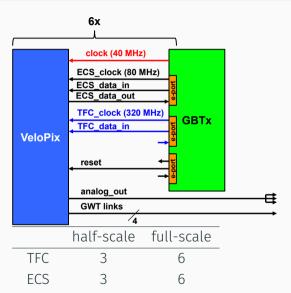
Links


More info at GBT Project

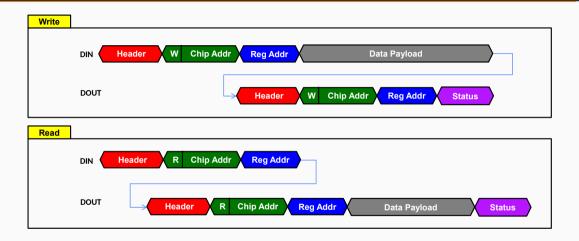
SCA

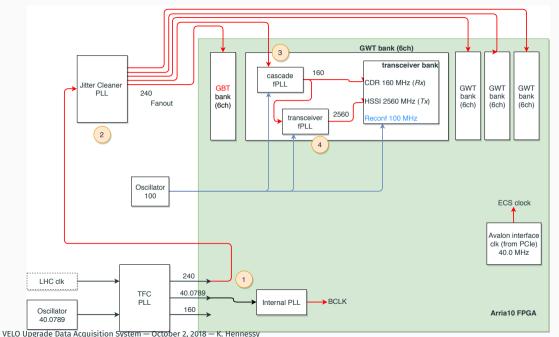

- · Companion to the GBT is the Slow Control Adapter (SCA)
- Implements multiple protocols
 - 16x I²C, 8x SPI, 1x JTAG, 31x GPIO
 - 31x ADCs and 4x DACs

Architecture


- Readout located on surface
 - Distance between FE and RO: ~350m
- ~15000 optical links
- ~ 500 readout boards
- ~24 links in average on each board
- ~100 kbytes per event
- ~32 Tb/s aggregate bandwidth

VeloPix Links




VeloPix Hybrid - ECS

- Baseline 1 GBTx + 1 SCA
- NO SCA for Front-end ASIC
- Connecting GBT e-ports directly to VeloPix ASIC
- Requires custom SOL40 firmware
- · GBT/Ctrl Hybrid prototype Jan
- VeloPix Hybrid prototype May

VeloPix - ECS

