獘

The EDM measured at BNL

Becky Chislett UCL

Measuring the muon EDM

Several methods were used to measure the EDM at the g-2 experiment at BNL (E821)

The EDM can be measured

- Indirectly by comparing the measured value of ω_{a} to the SM prediction
- Directly by looking for a tilt in the precession plane

For the direct method 3 techniques were used at E821:

- Vertical position oscillation as a function of time
- Systematics dominated
- Phase as a function of vertical position
- Again systematics dominated
- Provides a useful cross check
- Vertical decay angle oscillation as a function of time
- Statistics dominated
- Easiest improvement at E989

The following slides will discuss each of the methods, their uncertainties and possible improvements

Physics motivation

$$
\vec{d}=\eta \frac{Q e}{2 m c} \vec{s} \quad \vec{\mu}=g \frac{e}{2 m c} \vec{s}
$$

Defined by the Hamiltonian: $\quad H=-\vec{\mu} \cdot \vec{B}-\vec{d} \cdot \vec{E}$

Provides an additional
source of CP violation

	E	B	μ or d
P	-	+	+
C	-	-	-
T	+	-	-

Standard scaling : $\quad \frac{d_{\mu}}{d_{e}} \sim \frac{m_{\mu}}{m_{e}}$
d_{e} limits imply d_{μ} scale of $10^{-25} \mathrm{e} \cdot \mathrm{cm}$

But some BSM models predict non-standard scalings
(quadratic or even cubic)

The muon is a unique opportunity to search for an EDM in the $2^{\text {nd }}$ generation

The effect of an EDM

If an EDM is present the spin equation is modified to:

Run at the "magic momentum"

$$
Y_{\text {magic }}=29.3, p_{\text {magic }}=3.094 \mathrm{GeV}
$$

An EDM tilts the precession plane towards the centre of the ring
\longrightarrow Vertical oscillation ($\pi / 2$ out of phase)

$$
\omega_{a \eta}=\sqrt{\omega_{a}^{2}+\omega_{\eta}^{2}} \quad \delta=\tan ^{-1}\left(\frac{\eta \beta}{2 a}\right)
$$

Assuming the motional field dominates
Expect tilt of \sim mrad for $\mathrm{d}_{\mu} \sim 10^{-19}$
An EDM also increases the precession frequency

Measuring the EDM

The statistical uncertainty is inversely proportional to NA²

Number of muons
Asymmetry

G-2 asymmetry

Get the highest values of NA 2 towards the higher end of the energy spectrum

EDM asymmetry

Sensitive over a broad range of energies around $\sim 1.5 \mathrm{GeV}$

Measuring the EDM - vertical position

Measured using the front scintillator detectors (FSDs) and position sensitive detectors (PSDs)

Energy taken from matching to calorimeter hits

In simple terms :

However there are other effects that cause an oscillation in the average vertical position even without an EDM...

Vertical Beam Distribution

The vertical distribution of the positrons hitting the calorimeters changes as the muon spin precesses (without an EDM)

Effects at the g-2 frequency :

Differences in path length:

Positrons emitted outwards travel further to reach the calorimeter
\longrightarrow Wider beam spread

Differences in average energy:

Higher energy positrons curve less so hit the calorimeter closer to the beam \longrightarrow Smaller path length
\longrightarrow Narrower beam spread

Effects not at the g-2 frequency :
CBO :

Positrons released at a larger radius have a longer path length to the calorimeter
\longrightarrow Wider beam spread

Fitting the width

The changes in the width of the distribution can lead to changes in the average vertical position

Misaligned detector :

Mean
(wide) (narrow)
width

$$
+e^{-t / \tau_{C B O}}\left[S_{C B O} \sin \left(\omega_{C B O}\left(t-t_{0}\right)+\Phi_{C B O}\right)+C_{C B O} \cos \left(\omega_{C B O}\left(t-t_{0}\right)+\Phi_{C B O}\right)\right]+L t
$$

CBO terms : chosen such that oscillation is in the sine term

Perfectly aligned detector:
mean

Fixed from ω_{a} analysis

Deadtime (more hits in the centre tiles are eliminated at early times)

Fitting the Average Vertical Position

Now plot the mean vertical position as a function of time

Use the parameters determined from the fit to the width in the fit to the average vertical position

Plotted for each detector separately
Energy range : 1.4-3.2 GeV

Detector misalignment
g-2 terms : ω fixed

$$
f(t)=K+S_{g 2} \sin (\omega t)+C_{g 2} \cos (\omega t)
$$

$$
+e^{-t / \tau_{C B O}}\left[S_{C B O} \sin \left(\omega_{C B O}\left(t-t_{0}\right)+\Phi_{C B O}\right)+C_{C B O} \cos \left(\omega_{C B O}\left(t-t_{0}\right)+\Phi_{C B O}\right)\right]
$$

$$
+M e^{-t / \tau_{M}}
$$

\qquad Slow changes in detector response, pileup

The average vertical position is centred on $\sim 3 \mathrm{~mm}$ (detector misalignment)

Correct for detector misalignment

A misalignment of the detectors with the beam can show up in the EDM amplitude

Seen in the difference in the sine amplitude between stations

And the correlation between the offset and the amplitude

Expected the oscillations at the CBO and g-2 frequencies both to be due to the width oscillations combined with the detector misalignment

Plot the CBO amplitude against the g - 2 sine amplitude \longrightarrow Intercept corresponds to the EDM

$$
\longrightarrow \mathrm{S}_{\mathrm{g} 2}(0)=(-1.27 \pm 5.88) \mu \mathrm{m}
$$

Vertical position uncertainties

Horizontal oscillation + tilted detector
= vertical oscillation

Vertical spin

Statistical error
 $5.88 \mu \mathrm{~m}$

Systematics dominated measurement

+ longer path length for outward positrons
Effect = Error $(\mu \mathrm{m}) \quad$ vertical oscillation
$\mathrm{E} 821: \mathrm{S}_{\mathrm{g} 2}=(1.27 \pm 11.9) \mu \mathrm{m} \longrightarrow \mathrm{d}_{\mu}=(-0.1 \pm 1.4) \times 10^{-19} \mathrm{e} \cdot \mathrm{cm}$

$$
\longrightarrow \quad\left|d_{\mu}\right|<2.9 \times 10^{-19} \mathrm{e} \cdot \mathrm{~cm}(95 \% \text { C.L. })
$$

Measuring the EDM - phase

We expect the fitted phase to change as a function of vertical position even in the absence of an EDM

Outward decays have a longer path length before reaching the calorimeter
\longrightarrow Tend to hit further away from the centre of the detector
There are more outward going decays hitting the top and bottom

Also the decays that hit the top and bottom have to travel further
\longrightarrow Slight difference in the time they were created

There is a different mix of phases at different parts of the calorimeter

Measuring the EDM - phase

We expect the fitted phase to change as a function of vertical position even in the absence of an EDM

The inward going and outward going positrons are 180 degrees out of phase with each other
\longrightarrow In the centre of the calorimeter there are more inward going decays detected
\longrightarrow This causes a change in the phase measured at the centre

The opposite effect happens at the top and bottom of the calorimeter where there are more outward going decays detected

Measuring the EDM - phase

Without an EDM we therefore expect the phase to change symmetrically across the calorimeter face :

In the case there is an EDM the precession plane is tilted: \vec{B}

$\phi(y)$, Fitted Phase vs. Vertical Position

Measuring the EDM - phase

Consider the phase variation as a function of vertical position
This was measured using the PSDs and FSDs

The distribution is fit to extract the asymmetry :
Arbitrary phase
Muon mid plane

Up-down asymmetry EDM

The energy measurement isn't reliable at the edges of the calorimeter
\longrightarrow Only use 3 central FSDs, 12 central PSDs
$\phi(y)$, Fitted Phase vs. Vertical Position

For FSDs, just use : $\Delta \phi=\phi_{4}-\phi_{2}$

Measuring the EDM - phase

The results show some variability between stations

FSD results

PSD results
ϕ vs. y, Station 19

ϕ vs. y, Station 21

Can see that the distributions are not exactly symmetric
\longrightarrow But we haven't included systematics
There is a large variability between stations
\longrightarrow Indicates its likely to be due to misalignment

Measuring the EDM - phase

The FSD and PSD results agree when overlaid

ϕ vs. y, Station. 19
ϕ vs. y, Station. 21

Station	$y_{0}^{\phi}(\mathrm{mm})$	$E_{\phi}(\mathrm{mrad} / \mathrm{mm})$	$G_{\phi}(\mathrm{mrad} / \mathrm{mm})$	$\phi_{0}(\mathrm{mrad})$	χ_{ϕ}^{2}
19	9.040 ± 2.351	2.093 ± 0.6968	6.869 ± 0.6968	-141.1 ± 17.72	1.14
21	6.819 ± 2.441	0.7774 ± 0.6623	6.046 ± 0.6924	-145.8 ± 14.57	1.51

Station 19 would indicate an EDM but station 21 is consistent with 0

The two detectors agree - indicates this is most likely an alignment effect

Phase uncertainties

The systematic uncertainities are similar to the vertical position measurement

Detector misalignment is more important

asymmetry
\longrightarrow fake EDM signal

Detector Tilt

causes asymmetric vertical loses

Source	Sensitivity	Result
Detector Tilt	$26 \mu \mathrm{rad} / \mathrm{mm} / \mathrm{mrad} \times 0.75 \mathrm{mrad}$	$20 \mu \mathrm{rad} / \mathrm{mm}$
Detector Misalignment	$138 \mu \mathrm{rad} / \mathrm{mm} / \mathrm{mm} \times 0.2 \mathrm{~mm}$	$28 \mu \mathrm{rad} / \mathrm{mm}$
Energy Calibration	$43 \mu \mathrm{rad} / \mathrm{mm} / \% \times 0.1 \%$	$4.3 \mu \mathrm{rad} / \mathrm{mm}$
Muon Vertical Spin	$1.0 \mu \mathrm{rad} / \mathrm{mm} \times 8 \%$	$8.0 \mu \mathrm{rad} / \mathrm{mm}$
Radial B field	$0.72 \mu \mathrm{rad} / \mathrm{mm} / \mathrm{ppm} \times 20.0 \mathrm{ppm}$	$14.4 \mu \mathrm{rad} / \mathrm{mm}$
Timing	$17.0 \mu \mathrm{rad} / \mathrm{mm} / \mathrm{ns} \times 0.2 \mathrm{~ns}$	$3.4 \mu \mathrm{rad} / \mathrm{mm}$
Total systematic		$38 \mu \mathrm{rad} / \mathrm{mm}\left(0.93 \times 10^{-19} e \cdot \mathrm{~cm}\right)$
Total statistical		$28 \mu \mathrm{rad} / \mathrm{mm}\left(0.73 \times 10^{-19} e \cdot \mathrm{~cm}\right)$
Total		$47 \mu \mathrm{rad} / \mathrm{mm}\left(1.2 \times 10^{-19} e \cdot \mathrm{~cm}\right)$

$$
\text { E821: } d_{\mu}=(-0.48 \pm 1.3) \times 10^{-19} \mathrm{e} \cdot \mathrm{~cm}
$$

Again systematics dominated, although statistics play a larger role

Calorimeter analyses E989

The calorimeter based analyses are mostly systematics dominated

Have a segmented calorimeter (6×9 cells)
\longrightarrow E821 used scintillator panels on the the front of about half calorimeters

Improves ability to control pileup, beam position, detector tilt

- Laser calibration system and lower energy acceptance

Improves the timing information and energy/gain calibration

- Reduced CBO oscillations
- Introduction of 3 straw tracking stations

Improves the knowledge and monitoring of the beam distribution

- Increased statistics
- BMAD / G4Beamline simulations all the way from the production target

Vertical decay angle oscillations

Look for an oscillation in the vertical decay angle of the positrons measured by the tracker

An EDM would produce a vertical oscillation 90° out of phase from the number oscillation

Use the tracker to reconstruct the vertical angle of the positron at decay (same in the tracker as at decay in the absence of a radial magnetic field)

The positron decay distribution has a 10 mrad RMS width around the muon spin direction

Sets the intrinsic resolution to an EDM signal

Much less dependent on detector alignment, statistics dominated measurement

Selection of events

The tracks used in the analysis should not pass through massive objects which could cause deflections in the track

Tracks from the red and blue regions are removed

Cuts are also made to select regions which have the highest, flattest acceptance (to prevent the need for corrections):

Likely to hit vaccum
chamber frame

Period Binned Analysis

 frequencies and non periodic effectsThe period of the vertical oscillations that would indictate an EDM are known from the ω_{a} analysis

The resulting plot shows the average of the effect over the time interval
\longrightarrow Only effects that don't die with time will show up

Signal "interferes" constructively

Noise becomes constant background
Plotting the data modulo the precession period minimizes period disturbances at other

\longrightarrow Suitable for looking at the
EDM, not for looking at CBO

Fitting the number oscillation

Step 1 : Fit the number oscillation modulo the precession period to extract the phase

The precession period is taken from the g-2 analysis :

Fit to find φ, such that the number oscillation is in the cosine term

Fitting the vertical angle oscillation

Step 2 : Fit the vertical angle oscillation modulo the precession period

$$
\begin{aligned}
& T=\frac{2 \pi}{\omega}=4365.4 n s \\
& \text { from g-2 analysis }
\end{aligned}
$$

Fixed from number oscillation fit

$$
\theta(t)=M+A_{\mu} \cos (\omega t+\Phi)++A_{E D M} \sin (\omega t+\Phi)
$$

EDM oscillation comes in 90° out of phase from the number oscillation

RMS ~10mrad for each bin, as expected

1999 : $4.4 \pm 5.5 \mu \mathrm{rad}$ 2000 : $-4.5 \pm 5.4 \mu \mathrm{rad}$

Conversion to precession plane tilt

The amplitude of the oscillations in vertical angle are converted into a precession plane tilt

 using simulationThe boost to the momentum between the MRF and the lab frame means the measured vertical angle oscillations don't directly correspond to the precession plane tilt
(c) -25 mrad simulated signal

(a) - 100 mrad simulated signal
 Simulate different tilts to work out the corresponding oscillation

(b) - -50 mrad simulated signal

1 mrad precession plane tilt = $3 \mu \mathrm{rad}$ oscillation amplitude

Maximising Signal to Noise

As particles with small angles are though to carry little of the signal the significance of the measurement could be improved by cutting them out

To test this hypothesis use simulation with a tilt angle of 100 mrad :

- Plot average vertical decay angle vs time for different cuts on the decay angle
- Calculate the ratio of the signal to the error for each value

The amplitude of the signal increases with increasing minimum angle cuts but the errors also increase

Placing any cut reduces the signal/noise The changes at the centre of \longrightarrow the distribution provide valuable information

Maximising Signal to Noise

The highest momentum positrons tend to come when the spin is aligned with the muon momentum

Signal over error for various high momentum cuts

The lowest momentum positrons are less aligned with the spin
$\longrightarrow \quad$ could dilute the asymmetry

Signal over error for various low momentum cuts

In both cases the signal to noise is reduced by applying a cut, valuable information comes from all particles included

Maximising Signal to Noise

Lastly a cut in azimuth was considered to improve the signal to noise
The range of accepted angles varies as a function of azimuth
There could be a region in azimuth where the signal is reduced

Decay angle uncertainties

Main systematic uncertainties to be considered for this method:

Radial Magnetic field:

Would cause a tilt in the precession plane

$$
\vec{\omega}_{a}=-\frac{Q e}{m} a \vec{B}
$$

Detector acceptance:
Inward going positrons travel a shorter distance than outward going positrons
\qquad

Horizontal CBO oscillations

Phase or period errors:

Could mix the number oscillation into the EDM phase

Systematic error	Vertical oscillation amplitude $(\mu \mathrm{rad}$ lab $)$	Precession plane tilt (mrad)	False EDM gener- ated 10^{-19} $(e \cdot \mathrm{~cm})$
Radial field Acceptance coupling	0.13	0.04	0.045
Horizontal CBO Number oscillation phase fit	0.3	0.09	0.1
Precession period Totals	0.01	0.09	0.1

E821:
Oscillation amplitude : $(-0.1 \pm 4.4) \times 10^{-6} \mathrm{rad}$ $\longrightarrow d_{\mu}=(-0.04 \pm 1.6) \times 10^{-19} \mathrm{e} \cdot \mathrm{cm}$
$\longrightarrow \quad\left|d_{\mu}\right|<3.2 \times 10^{-19} \mathrm{e} \cdot \mathrm{cm}(95 \%$ C.L)

Dominated by the statistical error

Decay angle E989

The vertical angle measurement was mostly statistics dominated in E821
E989 will be fitted with three straw tracking stations around the ring

Each station has 8 modules each with 2 layers of 2 straws tilted at 7.5°

Expect O(1000) times the E821 statistics
(more muons, better acceptance)
Reduce error by 1 order of magnitude quickly, approaching 2 orders of magnitude by the end

Need to control the systematic errors:

- Amplitude of CBO reduced by factor 4
- Geometrical acceptance increased
- Tracker in vacuum chamber
- Understanding the beam and aligning the detectors well is key

Conclusions

There are several analysis techniques for measuring an EDM at g-2

- Indirectly from the difference of the g-2 phase
- Directly by measuring the vertical decay angle or vertical position oscillation
- Directly by looking at the phase variation as a function of vertical position

EISI

Measuring the EDM - Indirect

Look for an increase in the precession frequency (compared to SM prediction)

Measure the spin precession via the anti-muon decays:
 parallel to the muon spin

Count the number of positrons with $\mathrm{E}>1.2 \mathrm{GeV}$ hitting the calorimeters

Fit to extract the spin precession:

$$
N\left(t, E_{t h}\right)=N_{0}\left(E_{t h}\right) e^{-t / \gamma t}\left[1+A\left(E_{t h}\right) \cos \left(\omega_{a} t+\phi\left(E_{t h}\right)\right)\right]
$$

Agrees with SM : use error to set limit Larger than SM : use difference to set limit

High E kinematics

LH

Vertical position systematic uncertainties

Systematic Uncertainties

Any source of vertical oscillations at either the g-2 or CBO frequencies in the sine component is a source of systematic error

The effect and assessment of the various uncertainties will be discussed over the next few slides

Many of the systematics require the simulation to assess the magnitude of the effect

CBO oscillations systematics have reduced effect due to slope of 0.78

Effect	Error $(\mu \mathrm{m})$
Detector Tilt	6.1
Vertical Spin	5.1
Quadrupole Tilt	3.9
Timing Offset	3.2
Energy Calibration	2.8
Radial Magnetic Field	2.5
Albedo and Doubles	2.0
Fitting Method	1.0
Total Systematic	10.4
Statistical	5.9
Total Uncertainty	11.9

The CBO oscillations aren't well simulated
Produce a horizontally offset beam and use this is assess impact of a beam oscillation

6.8 mm change in beam position
$\longrightarrow 0.25 \mathrm{~mm}$ change in width

CBO width oscillations : 0.2 mm
$\longrightarrow 5.4 \mathrm{~mm}$ change in beam position

Detector Tilt

If the detector is tilted oscillations in the average horizontal position of positrons can be converted into vertical oscillations :

The tilt of the detectors was measured with a level to be $<12^{\circ}$

Horizontal oscillations at the g-2 frequency:

Horizontal oscillations at the CBO frequency:
Plot the horizontal shift on the calorimeters due to the horizontal beam shift :
6.8 mm beam shift

0.79 mm horizontal shift

So 5.4 mm beam shift
 0.6 mm horizontal shift

$6.1 \mu \mathrm{~m}$ systematic error

Quadrupole Tilt

A tilt in the quadrupoles would cause a tilt in the plane of the CBO oscillations, introducing a vertical component

It can be shown that for a tilt in the quadrupoles, θ the ratio of the horizontal to vertical oscillation amplitudes is :

$$
\frac{A_{\text {vert }}}{A_{\text {hor }}}=0.38 \theta
$$

There are 4 quadrupoles, each consisting of a long piece $\left(30^{\circ}\right)$ and a short piece $\left(15^{\circ}\right)$, placed to better than 0.5 mm Maximum tilt angle : 3 mrad long section 6 mrad short section

Include additional factors:

- Slope g-2 : CBO amplitudes
- Only using 4 tile mean

Muon Vertical Spin

An average vertical muon spin component would result in an average vertical component in the positron momentum

Average positron vertical momentum + longer path length for outward going positrons
 = oscillation in average vertical position

From the tracker :
mean positron vertical angle $=0.21 \mathrm{mrad}$ \longrightarrow G-2 oscillation : $11.3 \mu \mathrm{~m}$ CBO oscillation : $10.1 \mu \mathrm{~m}$

Consider effect on intercept :
$5.1 \mu \mathrm{~m}$ systematic error

Radial Magnetic Field

A radial magnetic field would cause the decay positrons to be deflected vertically

Radial magnetic field generally < 100 ppm

A radial magnetic field deflects the positrons vertically :
\longrightarrow Similar effect to the muon vertical spin
\longrightarrow Use the path lengths from before to calculate the effect

G-2 oscillation : 100ppm $\times 0.18 \mathrm{~ns} \times \mathrm{c}=5.4 \mu \mathrm{~m}$ CBO oscillation : 100ppm $\times 0.16 \mathrm{~ns} \times \mathrm{c}=4.8 \mu \mathrm{~m}$

Consider the effect on the intercept:

Timing Offsets

The top and bottom halves of the calorimeter are read out by different PMTs which could have a timing offset

Offset the hits in the top two FSD tiles by 5ns:

CBO oscillation amplitude not affected

Front Scintillator Detector (FSD)

g-2 oscillation amplitude shifts by $25-30 \mu \mathrm{~m}$
\longrightarrow Due to the oscillation in number of hits at the g-2 frequency
$32 \mu \mathrm{~m}$ shift in the intercept

Early data shows peaks every 149 ns due to the bunched muon beam
\longrightarrow Plot the positron time spectrum per FSD tile
\longrightarrow Compare the time of each peak
0.5 ns timing difference
$3.2 \mu \mathrm{~m}$ systematic error

Energy Calibration

Different PMTs reading out the top and bottom of the calorimeter can also result in a difference in calibration

The energy calibration is calculated by fitting the end point of the pulse area distribution

Change the fit range
A tile-by-tile calibration is applied to account for the differences in gain for the different tubes but is not perfect

Apply a 5\% calibration offset to the top 2 FSD tiles
5% calibration offset causes a $28 \mu \mathrm{~m}$ shift in the intercept

Detectors maximally offset by 3 mm

Use simulation to calculate change in endpoint due to a 4.5 mm vertical offset in the beam
0.7% change in end point
$\longrightarrow 0.5 \%$ energy calibration error
$2.8 \mu \mathrm{~m}$ systematic ${ }^{41}$ error

Doubles

Differences in sensitivities of the FSDs to low energy positrons could cause a systematic error

Double hits in the FSD tiles can be caused by:

- Pre-showering
- Back scattered electrons from the calorimeter (albedo)

Double hits are thrown away unless they are in adjacent tiles in which case one tile is selected randomly as the hit tile

Consider:

- Accepting no doubles
- Accepting both hits in a double

intercept shifts by $+2.0 \mu \mathrm{~m}$
-imtercept shifts by $-2.0 \mu \mathrm{~m}$

$2 \mu \mathrm{~m}$
systematic

Tile Inefficiency and Dead Time

Remake the histograms with a 5% tile inefficiency in the top half of the calorimeter
 (randomly throw out 5\% of the events)

Any differences in efficiency or deadtime of the scintillator tiles could produce a systematic error

$1.6 \mu \mathrm{~m}$ change in intercept

Shifts in the CBO and g-2 amplitudes tend to cancel as any
oscillations will be caused by width oscillations
5% inefficiency is way too high
negligible systematic

Remake the histograms with a 50ns dead time in the top half of the calorimeter

(the tiles have a 20ns dead time)
$0.6 \mu \mathrm{~m}$ change in intercept

Dead time difference will not be as high as 30ns
negligible systematic

Vertical Position Oscillation Results

The systematic uncertainties dominate the measurement

There are no obvious correlations between the uncertainties \qquad add in quadrature

Oscillation amplitude $=1.3 \pm 11.9 \mu \mathrm{~m}$

Effect	Error $(\mu \mathrm{m})$
Detector Tilt	6.1
Vertical Spin	5.1
Quadrupole Tilt	3.9
Timing Offset	3.2
Energy Calibration	2.8
Radial Magnetic Field	2.5
Albedo and Doubles	2.0
Fitting Method	1.0
Total Systematic	10.4
Statistical	5.9
Total Uncertainty	11.9

$$
d_{\mu}=(-0.1 \pm 1.4) \times 10^{-19} \mathrm{e} \mathrm{~cm}
$$

Assume the probability for an EDM is a gaussian:

- Centre at the measured value
- Width equal to the uncertainty

Integrate outwards from the central value until 95% is included

$$
-2.9 \times 10^{-19} \text { e cm < } \mathrm{d}_{\mu}<2.7 \times 10^{-19} \text { e cm (95\% CL) }
$$

For a limit on the absolute value, integrate outwards from 0 (rather than central value)

$$
\left|\mathrm{d}_{\mu}\right|<2.8 \times 10^{-19} \text { e cm }
$$

Vertical Decay angle systematics

Radial Magnetic Field

Any radial magnetic field would cause a tilt in the precession plane in the same way that an EDM does
$\vec{\omega}_{a}=-\frac{Q e}{m} a \vec{B}$ If the magnetic field vector is tilted, so is the precession plane vector

Asses the radial field from the vertical mean of the beam :
2 mm vertical offset (1999) $\longrightarrow 40 \mathrm{ppm}$ radial field
0.2 mm vertical offset (2000) $-\frac{1}{4} \mathrm{pm}$ m radial field

40 ppm corresponds to $0.1 \mu \mathrm{rad}$ vertical angle oscillation

The effect a radial field has on the paths of the positrons can be neglected in this case (unlike for the vertical position oscillations)
\qquad The tracking should track the positrons through the magnetic field

Acceptance Coupling

A variation in the acceptance of positrons at the $g-2$ frequency combined with an off centre beam distribution can result in a vertical oscillation

The outward going positrons have a longer path length than the inward going positrons

The vertical angle acceptance varies with azimuth Azimuthal oscillation + off centre beam
= vertical angle oscillation
Use simulation to calculate the vertical angle oscillations for different azimuthal oscillations (2 mm beam offset) :

Conservative systematic error 0.3 rad

Coherent Betatron Oscillations

Any evidence of the horizontal CBO oscillations in the vertical could cause a fake signal

Plot the vertical angle modulo the CBO period:
The amplitude of vertical angle oscillations at the CBO frequency is consistent with 0

Any vertical angle oscillations at the CBO frequency should average to 0 when plotted modulo the g-2 frequency

Cross check : Insert a vertical angle oscillation at the CBO frequency 10 times larger than the error in to simulation

EDM signal consistent with 0 to within $3 \mu \mathrm{rad}$

Vertical Angle Oscillation Results

The results from the fit:

$$
\begin{aligned}
& 1999: 4.4 \pm 5.5 \mu \mathrm{rad} \\
& 2000:-4.5 \pm 5.4 \mu \mathrm{rad}
\end{aligned}
$$

The statistical errors are an order of magnitude greater than the systematic errors

From simulation:

Systematic error	Vertical oscillation amplitude $(\mu$ rad lab $)$	Precession plane tilt $($ mrad $)$	False EDM gener- ated $(e \cdot \mathrm{~cm})$
Radial field Acceptance coupling	0.13	0.04	0.045
Horizontal CBO Number oscillation phase fit	0.3	0.09	0.1
Precession period Totals	0.01	0.09	0.1

1 mrad precession plane tilt $=3 \mu \mathrm{rad}$ oscillation amplitude

$$
1999: 1.4 \pm 1.8 \mathrm{mrad} \text { tilt } \quad 2000:-1.5 \pm 1.8 \mathrm{mrad} \text { tilt }
$$

$$
\begin{aligned}
& \vec{d}=\eta \frac{Q e}{2 m c} \vec{s} \\
& \delta=\tan ^{-1}\left(\frac{\eta \beta}{2 a}\right)
\end{aligned}>d_{\mu}=\frac{a \tan \delta}{\beta} \frac{e h}{2 m c} \quad \begin{aligned}
& 1999:(1.5 \pm 2.0) \times 10^{-19} \mathrm{e} \mathrm{~cm} \\
& 2000:(-1.7 \pm 2.0) \times 10^{-19} \mathrm{e} \mathrm{~cm}
\end{aligned}
$$

Take a weighted average of the two : $\mathrm{d}_{\mu}=(-0.03 \pm 1.4) \times 10^{-19} \mathrm{e} \mathrm{cm}$

$$
\left|d_{\mu}\right|<2.6 \times 10^{-19} \text { e cm (95\% CL) }
$$

